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Computer-assisted Trajectory Planning for Percutaneous 1 

Needle Insertions 2 

Abstract 3 

Purpose: Computed tomography (CT) guided minimally invasive interventions such as biopsies or 4 

ablation therapies often involve insertion of a needle-shaped instrument into the target organ (e.g. 5 

the liver). Today, these interventions still require manual planning of a suitable trajectory to the 6 

target (e.g. the tumor) based on the slice data provided by the imaging modality. However, taking 7 

into account critical structures and other parameters crucial to the success of the intervention - such 8 

as instrument shape and penetration angle - is challenging and requires a lot of experience.  9 

Methods: To overcome these problems, we present a system for the automatic or semi-automatic 10 

planning of optimal trajectories to a target, based on 3D reconstructions of all relevant structures. 11 

The system determines possible insertion zones based on so-called hard constraints and rates the 12 

quality of these zones by so-called soft constraints. The concept of pareto optimality is utilized to 13 

allow for a weight-independent proposal of insertion trajectories. In order to demonstrate the 14 

benefits of our method, automatic trajectory planning was applied retrospectively to n=10 data sets 15 

from interventions in which complications occurred.  16 

Results: The efficient (graphics processing unit-based) implementation of the constraints results in a 17 

mean overall planning time of about 9 seconds. The examined trajectories, originally chosen by the 18 

physician, have been rated as follows: in six cases, the insertion point was labeled invalid by the 19 

planning system. For two cases, the system would have proposed points with a better rating 20 

according to the soft constraints. For the remaining two cases the system would have indicated poor 21 

rating with respect to one of the soft constraints. The paths proposed by our system were rated 22 

feasible and qualitatively good by experienced interventional radiologists. 23 

Conclusions: The proposed computer-assisted trajectory planning system is able to detect unsafe 24 

and propose safe insertion trajectories and may especially be helpful for interventional radiologist at 25 

the beginning or during their interventional training. 26 
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1 Introduction 29 

Image-guided minimally-invasive interventions are gaining in importance in clinical routine today. 30 

Thermal ablation therapies, for example, are increasingly applied for treatment of focal malignant 31 

diseases. For 20% of all malignancies in the liver, surgical resection cannot be used for treatment, 32 

and radiofrequency ablation (RFA) emerged as a favored alternative [1]. This procedure requires 33 

insertion of a needle-shaped instrument into the cancerous tissue and therefore relies on precise 34 

planning of an appropriate insertion trajectory. Although protocols for manual trajectory planning 35 

are well established in clinical routine, the lack of three-dimensional (3D) presentation of the medical 36 

imaging data may lead to complications. Because the planning is mostly done on slice-based 37 

reformations of the 3D volume, the shape and length of the instrument can only be considered 38 

roughly and the penetration angle of the instrument is difficult to determine as well. 39 

Several approaches to automatic trajectory planning have been presented in the context of 40 

neurosurgery. Although structures in the brain can be considered more rigid compared to abdominal 41 

organs, the process of planning a straight trajectory is similar for both body parts. The early work of 42 

Vaillant et al. [2] presents an algorithm that allows for automatically computing a rating of possible 43 

insertion points considering critical structures in the brain. The basic idea is to minimize a cost 44 

function over all possible paths that sums up individual, manually assigned voxel costs that take into 45 

account the critical structures. Brunenberg et al . [3] and Shamir et al. [4] [5] pointed out that this 46 

cumulative risk computation can be misleading and introduced the concept of risk volume, where 47 

each voxel is assigned a risk value dependent on the minimal distance to the surrounding critical 48 

structures. Thus, the manual assignment of cost values can be replaced by an efficient computation 49 

on distance maps. Shamir et al. also presented a quantitative clinical evaluation that showed 50 

improvements in procedure time and trajectory risk. Although these methods are quite efficient 51 

when considering the proximity of the trajectory to critical structures, it may be difficult to integrate 52 
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other restrictions to the path which are of interest for interventions in the abdomen such as insertion 53 

angle or instrument shape. Navkar et al. [6] presented an approach based on projections of the 54 

critical structures on the head surface. They are thus able to detect trajectories which would hit or 55 

are too close to a critical structure and can also consider the length of the trajectories in their 56 

planning visualization. Nevertheless, they did not quantitatively evaluate their method on clinical 57 

data. Recently, Essert et al. [7] presented a method for automatic computation of electrodes 58 

trajectory for deep brain stimulation. Possible trajectories are determined by solving a set of 59 

geometric constraints. In a retrospective study on four patients, they could show the applicability of 60 

their method. 61 

Automatic and semi-automatic approaches to trajectory planning in the abdomen are sparse. Most 62 

methods concentrate on calculation and simulation of the ablation zone and the resulting optimal 63 

probe placement with respect to the coverage of the tumor. Altrogge et al. [8] present a finite 64 

elements (FEM)-based approach for optimizing the needle placement taking into account the electric 65 

potential of the probe and the steady state of the heat distribution during RF ablation. The authors 66 

also present an integration of this optimization module into a workflow oriented software module 67 

(Weihusen et al. [9]). This includes tools for interactively planning the trajectory by defining the 68 

center of the necrosis zone and the position of the shaft of the needle in the CT slices. Butz et al. [10] 69 

also focus on optimizing the insertion trajectory with respect to the necrosis zone. Additionally, they 70 

use some basic three-dimensional visualization of the planned trajectory and the surrounding organs, 71 

allowing the physician to optimize the planning result. Zhai et al. [11] propose a framework for 72 

calculating a 3D visualization of the complete surgery scene including the trajectory and a 3D model 73 

of the necrosis zone. Starting from an interactively chosen insertion trajectory, the necrosis model is 74 

computed taking into account the microwave energy, the tissue temperature and the blood 75 

perfusion rate. Planning of the actual trajectory considering e.g. critical structures and an automatic 76 

rating of the chosen insertion point are not part of these methods. 77 
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Villard[12],[13],[14] and Baegert [15],[16],[17] propose a method based on a constraint concept for 78 

automatically computing insertion trajectories. An insertion trajectory consists of the given target 79 

point and an insertion point on the skin. So-called hard constraints are used to determine the 80 

insertion zones on the skin, which represent trajectories to the target that do not violate any 81 

restrictions to the path such as hitting a critical structure or exceeding the needle length. The quality 82 

of the trajectories that are allowed according to the hard constraints is then rated by so-called soft 83 

constraints that represent clinically relevant parameters such as the distance to critical structures. 84 

Several soft constraints can be combined using a weighted sum in order to obtain an overall rating of 85 

a given trajectory. Note that, as pointed out by Brunenberg et al. or Shamir et al., weighted sum 86 

rating may be misleading. If a trajectory e.g. passes close to a critical structure but is also very short, 87 

the rating of the constraint considering the proximity to critical structures would be poor whereas 88 

the rating of the constraint considering the length would be good. Averaging these ratings could 89 

result in choosing this trajectory and a potential complication at the critical structure.  Because all 90 

calculations are based on surface representations of the tumor, the liver, the skin and the critical 91 

structures, the proposed algorithms are still time consuming and require optimization. Using the 92 

concept of risk volume [5] could be an interesting alternative. Furthermore, a clinical evaluation 93 

showing the suitability of the proposed systems for interventions in the abdomen has not yet been 94 

conducted. 95 

Recently, another planning approach has been proposed by Schumann et al. [18] where, as in Villard 96 

and Baegert, a set of constraints is used to determine suitable insertion trajectories. The authors use 97 

a method independent of the mesh representation of the critical structures by generating so-called 98 

constraint maps for each restriction by computing a cylindrical projection with the center at the 99 

target point. Each constraint map is rated by a constraint-specific rating function and merged to a 100 

weighted combination of all constraints. The maxima in this combined map correspond to the 101 

possible insertion trajectories. The authors report a total computation time of 6 seconds for 102 

determining optimal insertion trajectories on a standard computer. However, the weight factors of 103 
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each constraint still must be set manually and an evaluation showing the clinical suitability of the 104 

proposed trajectory planning system has not yet been performed.  105 

The main contribution of this work is two-fold. Firstly, we use the concept of pareto optimality which 106 

allows rating the trajectories weight-independently. Secondly, we evaluate an advanced version of 107 

the constraint concept for automatic trajectory planning retrospectively on a set of 10 clinical cases, 108 

in which complications occurred, to demonstrate the performance and clinical suitability of the 109 

proposed approach. The planning system aims to be helpful especially for unexperienced 110 

interventional radiologists and in difficult cases where e.g. the target is located close to a critical 111 

structure such as the heart. 112 

The remaining part of this paper is organized as follows: First, we describe how the concept of hard 113 

constraints (section 2.1) and soft constraints (section 2.2) is realized. Then we concentrate on how to 114 

automatically select the best- suited trajectories using the concept of pareto optimality (section 2.3, 115 

2.4). The design of the retrospective clinical study is presented in section 2.5. Finally, the results of 116 

the study are shown in section 3 and discussed in section 4. 117 

2 Materials and Methods 118 

We extend the work of Villard [14] and Baegert [15] to achieve a fast, robust, and extendable 119 

implementation for the automated trajectory planning. Although the main focus is on interventions 120 

in the liver, the system should be easy to adapt for usage in other body parts. Thus, a modular 121 

structure should allow integration of new constraints needed for different interventions. Also, the 122 

choice of the critical structures is not limited to a particular set but is entirely up to the interventional 123 

radiologist. In most cases of RFA liver interventions, bones, lungs, heart, stomach, gall bladder and 124 

big vessels are considered for planning. All components of the system have been developed within 125 

the Medical Imaging Interaction Toolkit (MITK) [19], a convenient platform for developing medical 126 

image processing applications, providing functionality similar to that of commercial image guided 127 

therapy systems. The computations for the planning result rely on mesh representations of the 128 
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segmentations of skin, liver, tumor and critical structures which can be achieved with any 129 

segmentation tool. For this study, we used the semi-automatic, interactive approach presented by 130 

Maleike et al. [20]. 131 

 Figure 1. Constraint concept of the automatic trajectory planning. Surfaces of the skin, the liver, the 132 
tumor and other critical structures are created from corresponding segmentations. The insertion 133 
zone on the skin is determined using a combination of hard constraints. The points of the skin where 134 
insertion of the needle is not applicable are marked in red. A rating of those insertion zones is 135 
achieved by applying a combination of soft constraints. 136 
 137 
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The general optimization and extension of the constraint concept is described in section 2.1 and 2.2. 138 

The primary focus of this paper is on an additional, pareto-based planning interface for the physician 139 

(section 2.3) and a retrospective clinical study for quality assessment of the method (section 2.5).  140 

2.1 Determination of insertion zones (hard constraints) 141 

The points of the skin are progressively eliminated from the possible insertion zone by applying 142 

different hard constraints in a pipeline if the corresponding trajectory to the target does not satisfy 143 

the condition of the constraints (e.g. a maximum length of the trajectory) and thus would cause 144 

major complications during intervention. Each point in the resulting insertion zone (Figure 1) then 145 

defines a trajectory together with the predefined target point. Five different hard constraints have 146 

been implemented and used for this study and will be described in detail in the following paragraphs. 147 

Occlusion Constraint  148 

The occlusion constraint is used to determine those parts of the skin for which the corresponding 149 

insertion trajectory would not traverse any critical structure.  150 

 Figure 2. (a) Schematic illustration of the occlusion constraint and the determination of the insertion 151 
zone. All points of the skin that are visible from the target point are marked as possible insertion 152 
points. (b) Implementation of the occlusion constraint using fast occlusion queries. In a first rendering 153 
step with the Z-buffer turned off, the occlusion query returns the maximal number of drawable pixels 154 
for every triangle of the mesh of the skin (m). For the second rendering with the Z-buffer turned on, 155 
the occlusion query returns the number of actually visible pixels (a). The difference between these 156 
two values determines whether the triangle is completely visible (a = m), partly visible (0 < a < m) or 157 
not visible (a = 0). 158 
 159 
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The task of finding those points can be modeled as a line-of-sight problem, in which the virtual 160 

camera, which is used during the rendering1, is placed at the target position. All points of the skin 161 

that are visible from this position - and thus not occluded by any critical structure - are marked as 162 

possible insertion points (Figure 2a). To allow for an efficient computation of these insertion zones, 163 

the so-called occlusion queries are used (Figure 2b). Every triangle of the mesh representing the skin 164 

is drawn (rendered) twice. In the first step with the Z-buffer2

This approach already uses the potential of modern graphics hardware, but still shows a performance 169 

leak as the central processing unit (CPU) and the graphics-processing unit (GPU) is not working 170 

parallel when a whole mesh is examined. The CPU has to wait for the GPU while the rendering of a 171 

triangle is in progress, and the GPU has to wait for the CPU, while the latter evaluates the result of 172 

the occlusion query. To overcome this problem, we introduced a buffer of occlusion queries, which 173 

will be extended as long as all triangles are rendered. The CPU in parallel reads the results of the 174 

completed queries from the buffer and processes it. This ensures a maximal utilization of resources. 175 

 turned off, the maximal number 𝑚 of 165 

drawable pixels is determined for each triangle. In the second run with the Z-buffer turned on, the 166 

number of actually visible pixels 𝑎 of this triangle is returned. These numbers indicate whether the 167 

triangle is completely visible (𝑎 = 𝑚), partly occluded (0 < 𝑎 < 𝑚) or not visible (𝑎 = 0). 168 

Safety Margin around Target Constraint 176 

The safety margin around target constraint ensures that a safety margin of at least 1 cm of healthy 177 

liver tissue is provided on that part of the trajectory located between the surface of the tumor and 178 

the liver capsule. This is needed to prevent bleeding and to allow cauterization and thus minimize the 179 

possible spreading of tumor cells. [21] Technically, this constraint marks parts of the liver surface as 180 

additional critical structures internally using the occlusion constraint as shown in Figure 3. Those 181 

critical structures are then considered by the “global“ occlusion constraint. 182 

                                                           
1 Rendering: Process of generating an image of a scene (e.g. three-dimensional representation of different 
organs) from an underlying model (e.g. surface representation) of that scene 
2 Z-Buffer: Array of depth values of pixels generated during the rendering process. If two objects of the scene 
would be rendered into the same pixel, Z-buffering chooses the one closer to the camera. 
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 183 

184 
Figure 3. (a) Schematic illustration of the safety margin around target constraint, which ensures a 185 
safety margin of healthy liver tissue of 1cm on that part of the trajectory located between the 186 
surface of the tumor and the liver capsule. (b) Computation of additional critical structures for the 187 
occlusion constraint. First the tumor (dashed line) is dilated by the safety margin. Then the occlusion 188 
constraint is internally used to determine those parts of the liver that are visible from the center of 189 
the tumor. These represent the points which would result in a trajectory that does not cover the 190 
safety margin between the tumor surface and the liver capsule. Finally, these parts of the liver are 191 
defined as additional critical structures to be used by the occlusion constraint. 192 
 193 

Tangency Constraint 194 

The tangency constraint ensures that the angle in which the trajectory intersects the liver surface is 195 

bigger than 20° and therefore prevents the needle from slipping off the liver surface (Figure 4a).  To 196 

allow for an efficient computation of the corresponding insertion zones, all triangles of the liver 197 

surface are determined for which the trajectory would show an insertion angle to the liver surface 198 

smaller than 20°. These triangles are then used as additional critical structures for the occlusion 199 

constraint. 200 

 201 
Needle Length Constraint 202 

The needle length constraint ensures that the trajectory is shorter than the needle to be inserted. All 203 

insertion points leading to a longer trajectory are eliminated from the insertion zone (Figure 4b). 204 
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205 
Figure 4. (a) Schematic illustration of the tangency constraint, which ensures that the angle in which 206 
the trajectory intersects the liver surface is bigger than 20°. (b) The needle length constraint excludes 207 
all insertion trajectories from the insertion zone that are longer than the needle. 208 

RFA-Umbrella Constraint 209 

Radiofrequency ablations are generally performed using a needle-shaped applicator. In order to 210 

enlarge the necrosis zone when treating large tumors, recent needle models offer the possibility to 211 

deploy a set of spikes that form a kind of umbrella. Common models currently used in clinical routine 212 

are the LeVeen Electrode System and the StarburstTM Talon Device. Their deployed spikes can be 213 

represented by parts of a superquadric toroid which can be mathematically modeled using implicit 214 

functions that allow for fast and flexible computation of intersections with critical structures. In 215 

general, implicit functions are functions in which the dependent variable has not been given explicitly 216 

but as the solution of the equation 𝐹(𝑥,𝑦, 𝑧) = 0. They can be used for the mathematical description 217 

of a surface representation of an object [22]. Evaluating the so-called inside-out function 𝐹(𝑥,𝑦, 𝑧) 218 

allows to decide whether the corresponding point (𝑥,𝑦, 𝑧) lies inside (𝐹(𝑥, 𝑦, 𝑧) < 0), outside 219 

(𝐹(𝑥,𝑦, 𝑧) > 0) or on the surface (𝐹(𝑥,𝑦, 𝑧) = 0).  220 

The RFA-umbrella constraint ensures that this additional umbrella does not hit any critical structure 221 

(Figure 5). The inside-out function is defined by a superquadric toroid 𝑇(𝑥,𝑦, 𝑧) = �𝑟𝑐 −222 

�𝑥2 + 𝑦2�
2

+ 𝑧² − 𝑟𝑎², where 𝑟𝑐 is the radius from the center of the torus to the center of the torus 223 

tube and 𝑟𝑎 is the radius of the torus cut by the six planes that form a box with the extents 𝑎, 𝑏, and 𝑐 224 

(Figure 5c). For every insertion trajectory and the corresponding orientation of the umbrella, the 225 
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resulting implicit function is evaluated for every point of the surface of the critical structures. If one 226 

of the resulting values is smaller than 0, the corresponding insertion point on the skin is eliminated 227 

from the insertion zone. Note that if no surface point is located inside the umbrella model, the 228 

umbrella is located completely outside or inside of a critical structure. The inside case, which would 229 

cause complications that could not be detected by this constraint, is not possible because the target 230 

would also have to lie inside the critical structure. 231 

232 
Figure 5. (a) Schematic illustration of the RFA-umbrella constraint that ensures the umbrella- shaped 233 
electrode of the RFA needle does not hit any critical structures. (b) Prong umbrella of LeVeen 234 
Electrode System. (c) Surface representation using implicit function. 235 

2.2 Rating of insertion zones (soft constraints) 236 

The previously determined insertion zones are rated by three different soft constraints defined by a 237 

corresponding cost function, each representing one clinically relevant parameter (Figure 6). All soft 238 

constraints are normalized to allow for a weighted combination as reported by Villard/Baegert [17]. 239 

The rating value of the soft constraints is between 0 and 1, where 0 refers to an invalid trajectory and 240 

1 refers to a trajectory that is considered relatively safe. 241 

242 
 Figure 6. Rating of the insertion zones by the soft constraints:  The distance to critical structures 243 
constraint rates the possible insertion trajectories according to their distance to critical structures. 244 
The length of the trajectory is considered by the trajectory length constraint. The insertion angle 245 
constraint prefers trajectories that have a small angle to the axial slice the target lies in. 246 
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Distance to critical structures constraint 247 

The distance to critical structures constraint (DTCS) 1c rates the possible insertion trajectory tr  248 

according to its distance 𝑑(𝑡𝑟) to critical structures, which is defined as the shortest distance 249 

between the insertion trajectory and any mesh point of the critical structures. The bigger the 250 

distance is, the better the trajectory is rated. To reduce computation time, the mesh points of all 251 

critical structures are initially stored in so-called KD-trees [23] which represent a data structure that 252 

allows for high performance navigation in a large set of points. The rating is computed as follows:  253 

𝑟𝑐1(𝑡𝑟) =
𝑑(𝑡𝑟) − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 

where 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the minimal and maximal distance to critical structures, respectively. 254 

Trajectory length constraint 255 

The trajectory length 𝑙(𝑡𝑟) is considered by the trajectory length constraint (TL) 2c . The shorter the 256 

trajectory, the better the corresponding insertion point is rated with the rating being proportional to 257 

the trajectory length. The rating is computed as follows:  258 

𝑟𝑐2(𝑡𝑟) = 1 −
𝑙(𝑡𝑟) − 𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛
 

where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are the minimal and maximal trajectory length, respectively. 259 

Insertion angle constraint 260 

Physicians often tend to insert the needle in the axial slice as acquired by the CT (in-plane). 261 

Therefore, the insertion angle constraint (IA) 3c  rates those trajectories better that are closer to the 262 

axial plane the target is in. It thus reduces the number of degrees of freedom which have to be 263 

considered when transferring the plan to the patient. Furthermore, the trajectory can be confirmed 264 

more easily in a control CT scan. The rating is calculated from the insertion angle 𝛼(𝑡𝑟) according to 265 

an exponential scoring function, which was determined empirically: 266 



13 
 

𝑟𝑐3(𝑡𝑟) = �
𝑒−

𝛼(𝑡𝑟)²
20°² ;  𝛼(𝑡𝑟) ≤ 40°

     0   ;  𝛼(𝑡𝑟) > 40°

� 

2.3 Semi-automatic selection of a trajectory 267 

Given the insertion zones, there are now many candidates for an insertion point of the trajectory. To 268 

decide on the final path, the control is returned to the radiologist who chooses the one he personally 269 

rates best. To support him with this decision, we developed two alternatives to assist planning of the 270 

final insertion trajectory. Firstly, as proposed by Baegert et al. [15], a proposal for suitable insertion 271 

trajectories can be achieved by adapting the weights of the soft constraints (section 2.3.1). Secondly, 272 

the principle of pareto optimality can be used for a weight-independent proposal of appropriate 273 

insertion trajectories (section 2.3.2). 274 

2.3.1 Weight-based trajectory planning 275 

To achieve a rating of the insertion zones, the normalized result 𝑟𝑐𝑖(𝑡𝑟) of each soft constraint is 276 

considered in a weighted sum.  277 

𝑅(𝑡𝑟) = �𝑤𝑖𝑟𝑐𝑖(𝑡𝑟 )
𝑛

𝑖=1

 

The individual weighting factors 𝑤𝑖 are manually selected with ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . The resulting rating 𝑅 is 278 

visualized in the insertion zone using a color gradient ranging from green ("good rating", big 𝑅) to red 279 

("poor rating", small 𝑅). An update of the weights leads to a change of the color gradient (Figure 7). 280 

For planning the final insertion trajectory, the insertion point can simply be marked by clicking on the 281 

desired location on the skin. As an extension of the work of Villard and Baegert, a set of better points 282 

(at least better in one parameter and not worse in another one) can be shown (Figure 8 and 9b). 283 
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284 
 Figure 7. Color coded insertion zones for differently weighted combinations of the soft constraints 285 
based on the same combination of hard constraints. 100% means that the weight was 1 for the 286 
examined constraint and 0 for the other constraints. The contour of the tumor is drawn in white. (a) 287 
100% distance to critical structures. (b) 100% insertion depth. (c) 100% in-plane. 288 
 289 
2.3.2 Pareto-based trajectory planning 290 

To provide an automatic way of planning a trajectory, the principle of pareto optimality [24]  is used 291 

to determine suitable insertion trajectories without the need of weights (Figure 8). A point in a set of 292 

points is called pareto-optimal if there is no other point in this set that scores better in one 293 

parameter without scoring worse in another one. The set of all pareto-optimal points is called pareto 294 

frontier. In our case, the parameter space is spanned by the individual soft constraints. Applying the 295 

pareto-based optimization, the system can either show all pareto-optimal points as a proposal for 296 

trajectories or the intersection between this pareto frontier and the set of better points (cf. section 297 

2.3.1) calculated from a chosen insertion point (Figures 8,9). This allows providing the physician with 298 

an automatically generated proposal and directs his attention towards those regions of the insertion 299 

zone, which are best suited for an insertion. 300 
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 301 
Figure 8. Illustration of the concept of pareto optimality and trajectory selection explained for a two-302 
dimensional parameter space with the parameters insertion depth and distance to critical structures. 303 
A point (e.g. p1) is called pareto-optimal if there is no other point that scores better in one 304 
parameter without scoring worse in another. Point p2 is not pareto-optimal because p1 scores better 305 
in both parameters. The line at the edge of the point cloud is called pareto frontier and includes all 306 
pareto-optimal points. The rectangle marks all points that are in at least one parameter better suited 307 
than the chosen insertion point. They form the so-called set of better points for a given insertion 308 
point. The intersection between the pareto frontier and the set of better points contains all points 309 
that are pareto-optimal and in all parameters better suited than the chosen insertion point. 310 
 311 
 312 

313 
Figure 9. Different types of trajectory selection assistance. (a) Transparent insertion zone (b) Set of 314 
better points (green) which score in at least one parameter better than the chosen insertion point 315 
(red). (c) Pareto frontier (blue) showing all pareto-optimal points, i.e. the set of points for which 316 
there is no other point, which scores better in one parameter without scoring worse in another one. 317 
Two selections are marked and the quantitative measures of the soft constraints distance to critical 318 
structures (DTCS), trajectory length (TL) and insertion angle (IA) are provided. (d) Insertion points 319 
lying both on the pareto frontier and in the set of better points (dark blue).  320 
 321 

2.4 Slice-based correction 322 

The slice-based planning offers the physician the possibility to plan or refine a trajectory on 323 

reconstructed slices of the CT dataset (axial, sagittal, and coronal) or in an interactive three-324 
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dimensional view. A point-and-click interface allows for easy interaction with the trajectory. 325 

Additionally, there is a possibility to step through the planned trajectory and to reconstruct slices of 326 

the data set, in which the trajectory is completely visible. All relevant structures can be visualized in 327 

the two-dimensional slices and the three-dimensional view (Figure 10). 328 

329 
 Figure 10. Trajectory planning interface realized within the Medical Imaging Interaction Toolkit 330 
(MITK [19]). On the left side, the user can view the medical imaging data in multiple planar 331 
reconstructions (transversal, sagittal, coronar) and also has interactive access to a 3D viewer which 332 
presents e.g. 3D surface data. On the right, the graphical user interface (GUI) for the trajectory 333 
planning provides tools for both automatic planning and manual trajectory refinement.  334 

2.5 Evaluation 335 

The evaluation of the proposed system for automatic trajectory planning was performed in a 336 

retrospective study on n=10 clinical datasets which showed complications during the intervention 337 

(e.g. pneumothorax, Table 1). The interventions were performed by different interventional 338 

radiologists. For each intervention, a pre-interventional planning CT scan and multiple intra-339 

interventional control CT scans were acquired. To reduce the radiation exposure to the patient, the 340 
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control scan did only cover that region of the image showing the needle. In order to facilitate the 341 

extraction of the chosen insertion point, the control scan was registered to the planning scan using a 342 

point-based registration method [25]. Due to the retrospective nature of the study, the planning and 343 

control scan were not always acquired in the same state of respiration. This affects the position and 344 

size of the lungs in particular which have to be considered as critical structures. To compensate for 345 

this and for breathing motion in general, we dilated the lung meshes by 12 mm, which represents the 346 

mean lung motion in cranial-caudal direction (Seppenwoolde et al. [26]). Skin, liver, tumor, and 347 

critical structures were segmented manually using the interactive segmentation framework of MITK 348 

[20]. 349 

Case Intervention Complication Needle type 
1 Liver RFA Pneumothorax Single needle 
2 Liver RFA Pneumothorax Single needle 
3 Liver RFA Pneumothorax Starburst umbrella needle (∅3cm) 
4 Liver RFA Pneumothorax LeVeen umbrella needle (∅2cm) 
5 Liver RFA Pneumothorax LeVeen umbrella needle (∅2cm) 
6 Liver RFA Pericardal effusion Starburst umbrella needle (∅3cm) 
7 Liver RFA Hematothorax LeVeen umbrella needle (∅2cm) 
8 Liver RFA Pneumothorax Starburst umbrella needle (∅3cm) 
9 Drainage Pneumothorax Single needle 
10 Drainage Pneumothorax Single needle 

Table 1. Data sets used for the retrospective evaluation. The type of intervention, the type of 350 
complication and the type of the needle used are shown. For the cases 9 and 10, the targets did not 351 
lie inside the liver. Therefore, the liver specific constraints safety margin around target and tangency 352 
were not applied. 353 
 354 
The automatic planning was performed on all 10 datasets using a desktop computer (Intel CoreTMi7, 355 

2.93 GHz, 3.23 GB RAM, GeForce 8800GT, Windows XP, 32 bit). 356 

For the technical evaluation, the runtime of each constraint and the remaining insertion zone after 357 

application of the hard constraints were determined. 358 

In the clinical evaluation, the result of the automated planning was retrospectively compared to the 359 

clinically chosen trajectory to investigate, whether the hard constraints would have prohibited the 360 

planned trajectory or if it would have been rated poorly by (one of) the soft constraints.  361 
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To assess the validity of the tractories proposed by our system, we asked two interventional 362 

radiologists with experience in punctures and RFA (R1: more than 2500 punctures and more than 300 363 

RFAs, R2: more than 200 punctures and more than 50 RFAs) to use our software to select one point 364 

on the pareto frontier as potential insertion point for each of the ten cases of our retrospective data 365 

set. The experts were then asked to qualitatively compare the corresponding path with the actually 366 

chosen path by answering the following questions: 367 

• Is the path proposed by the system a good proposal given the anatomy of the patient? 368 

• Was the chosen insertion point a good choice? 369 

• Which path would you prefer? 370 

3 Results 371 

Figure 11 illustrates the trajectory planning procedure performed for one of the ten patients for each 372 

step of the workflow and the resulting surface with transparent green insertion zone.  Table 2 shows 373 

the mean execution times of the hard constraints and the soft constraints. Note that the execution of 374 

the hard constraints in the pipeline progressively eliminates points from the insertion zone and thus 375 

reduces the execution time for the constraints applied last in the pipeline. The execution time of the 376 

hard constraints ranged from 0.02 ±0.00 s for the needle length constraint to 4.13 ± 0.55 s for the 377 

RFA-umbrella constraint. The soft constraints took 0.02 ± 0.00 s (insertion depth), 0.01 ± 0.00 s 378 

(insertion angle) and 3.18 ± 3.13s (distance to critical structures), respectively. The umbrella 379 

constraint could profit most from the execution in the constraints pipeline and could be executed 380 

about 38 s faster.  The mean overall execution time of the entire automatic trajectory planning was 381 

9.23 ± 5.15 s. Due to an improved GPU based implementation of the occlusion constraint its 382 

execution time could be decreased from 24.39 ± 3.10 s for the approach as presented by Villard and 383 

Baegert to 2.48 ± 0.20 s using similarly sized meshes, which is an improvement of 90%.  384 

 385 
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  Figure 11. Trajectory planning workflow and resulting surfaces. For the hard constraints, the 386 
insertion zone is shown transparently green. The result of the soft constraints is visualized with a 387 
color gradient ranging from red (poor rating) to green (good rating). 388 
 389 
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 Constraint Time (s) 

HC 

Safety margin around target (n=8) 1.27 ± 0.18 
Tangency (n=8) 0.04 ± 0.01 

Occlusion (n=10) 2.48 ± 0.20 
Needle Length (n=10) 0.02 ± 0.00 

Umbrella (n=6) 4.13 ± 5.29 

SC 
Distance to Critical Structures (n=10) 3.18 ± 3.13 

Insertion Depth (n=10) 0.02 ± 0.00 
Insertion angle (n=10) 0.01 ± 0.00 

Table 2. Mean execution time in s for each hard constraint (HC) and soft constraint (SC) averaged 390 
over the specified number of datasets applicable for that constraint. 391 
 392 
Considering the remaining area for possible insertion points on the skin, the occlusion constraint is 393 

the most restrictive constraint, leaving only 18% of the patient's skin as insertion area. The tangency 394 

constraint in contrast leaves 93% for possible insertion (safety margin around target: 88%, needle 395 

length: 43%, umbrella: 5%). 396 

Case Complication Expected result (organ) Trajectory excluded? 
1 Pneumothorax Occlusion (lung) No 
2 Pneumothorax Occlusion (lung) No 
3 Pneumothorax Occlusion (lung) Yes 
4 Pneumothorax Occlusion (lung) Yes 
5 Pneumothorax Occlusion (lung) Yes 
6 Pericardial effusion Umbrella (heart) Yes 
7 Hematothorax Occlusion (lung) Yes 
8 Pneumothorax Safety margin around target (liver) Yes 
9 Pneumothorax Occlusion (lung) No 
10 Pneumothorax Occlusion (lung) No 

Table 3. Performance of the hard constraints. For all 10 cases with complications, the hard constraint 397 
expected to exclude the chosen trajectory is given together with the actual exclusion result 398 
 399 
As Table 3 shows, the initially chosen insertion point was declared invalid by the planning system for 400 

six cases (3-8).  For these cases, the correct hard constraint excluded the chosen trajectory. In case 3, 401 

for example, a pneumothorax occurred and the occlusion constraint declared the insertion point 402 

illegal with the lung being the restrictive critical structure. For the cases 1, 2, 9 and 10 the hard 403 

constraints did not exclude the chosen insertion points even though a pneumothorax occurred in 404 

those cases. The reader may be reminded that the respiratory motion causes an additional 405 

uncertainty for the planning in the position of the lungs. Additionally, due to the retrospective nature 406 

of this study, the organ positions in the planning and the control CT may differ. Table 4 shows that in 407 

two of the four cases in which the chosen insertion point was valid, better points could be found for 408 
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which the rating of one or more soft constraints could be improved without worsening the remaining 409 

soft constraints. For the two cases, where the automatic proposal could not find better points, the 410 

physicians tended to choose a short insertion trajectory close to critical structures and almost in-411 

plane.  412 

Case Improvement 
possible? 

Better points (% of insertion zone) Insertion zone (cm²) 
DC TL IA 

1 No 89.0 0.03 1.9 293 
2 No 62.3 0 32.9 220 
9 Yes 12.6 52.0 5.2 81 

10 Yes 33.1 9.3 50.1 91 
Table 4. Quality of the chosen insertion point for the four data sets where the chosen insertion point 414 
was declared valid by the hard constraints. The table shows if an improvement of the rating of one or 415 
more soft constraints was possible without worsening the rating of the remaining constraints and 416 
how many points (in percentage of the total number of points in the insertion zone) showed a better 417 
scoring with respect to every single soft constraints (DC = distance to critical structures, TL = 418 
trajectory length,  IA = insertion angle). The size of the insertion zone given in cm². 419 
 420 
Figure 12 shows the chosen insertion point compared to all other points of the insertion zone 421 

regarding the scores of each soft constraint for the four cases where the chosen trajectories were not 422 

excluded by the hard constraints. In two of the four cases (1, 2), the physician chose trajectories 423 

which were pareto-optimal. In both cases the path was chosen with a short trajectory length, 424 

because these trajectories were technically easier to transfer to the patient. In contrast, many 425 

insertion points with a bigger distance to critical structures could be found while only slightly 426 

increasing the insertion depth or the insertion angle. In case 9 the trajectory was almost chosen in-427 

plane with a sufficiently big distance to critical structures while the resulting length of the trajectory 428 

was rather long. Furthermore, the insertion depth could have been decreased without increasing the 429 

insertion angle or decreasing the distance to critical structures, i.e., the chosen insertion point was 430 

not pareto-optimal. In case 10, the trajectory length was considerably short, while the distance to 431 

critical structures was very small and the angle to the transversal plane relatively big. The insertion 432 

point was almost pareto-optimal, but the system identified several points with a smaller insertion 433 

angle which decreases the uncertainties of an angulated needle insertion. 434 



22 
 

 435 

436 
Figure 12. Results of the soft constraints for the four cases where the chosen insertion point was not 437 
excluded by the hard constraints.(a) Score of the chosen insertion point visualized for each soft 438 
constraint in a bar graph ranging from the worst to the best score. (b)+(c) Plots of the scores of all 439 
points in the insertion zone and the chosen insertion point each shown for two of the soft 440 
constraints. (d) Surface representation of the whole scene which shows the color-coded skin, critical 441 
structures, and the target and insertion point chosen by the physician. 442 

Figure 13 and Table 5 summarize the results of the quality assessment of the proposed trajectories. 443 

R1 rated the trajectory he selected with the planning system better than the original path in all cases 444 

and needed 3 minutes on average for the selection. However, for the cases 5 and 6 a suitable 445 

trajectory could only be found when not using the umbrella constraint because in this cases the 446 

radiologist would not have fully deployed the spikes of the umbrella to cover the tumor, like it is 447 

assumed by the constraint. R2 could find better trajectories in all cases but case 6 and also needed 3 448 

minutes on average for the trajectory selection. For the cases 4, 5, 6 and 8 the umbrella constraint 449 
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was not used to select a trajectory. In some cases (4, 6, 9) several proposed trajectories were rated 450 

poorly because they would hit the portal vein which was not included as a critical structure, because 451 

no contrast enhanced CT scan was available. Our radiologists, however, would have used such an 452 

additional scan for planning a safe trajectory. Furthermore two trajectories (case 8 and 10) were 453 

rated technically good but difficult to perform. According to R1, the use of a navigation system such 454 

as the one of Maier-Hein et al. [27] would be beneficial in these cases. Quantitatively, the trajectories 455 

chosen by the radiologists were more distant to critical structures but longer compared to the 456 

originally chosen insertion point. 457 

458 
Figure 13. Quality assessment of the pareto-optimal points proposed by the planning system. Two 459 
interventional radiologists (R1, R2) each chose the subjectively best point from the pareto frontier. 460 
The corresponding quantitative measures distance to critical structures (a), trajectory length (b), and 461 
insertion angle (c) are shown for the selected points and the originally chosen insertion point (IP). 462 
Note that the radiologists could only find suitable points when not using the umbrella constraint in 463 
the cases 5, 6 (R1) and 4, 5, 6, 8 (R2).  464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
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 472 
 473 
 474 

Case 1 2 3 4 5 6 7 8 9 10 
R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

better? + + + + + + + + + + + - + + + + + + + + 
time (min) 7 7 1 3 2 3 1 2 8 2 2 2 1 2 1 2 2 2 1 1 

# points 155 16 5 56 40 19 74 97 75 38 
Table 5. Selection of the insertion point from the pareto frontier and comparison with the original 475 
insertion point. The rows show whether the point that was selected by the interventional radiologist 476 
(R1 or R2) was better than the original point (better?) according to the radiologist himself. Time 477 
represents the duration of the manual part of the planning process based on the pareto frontier. # 478 
points ist the number of points on the pareto frontier.  479 

 480 

4 Discussion 481 

To our knowledge, we are the first to present a weight-independent approach for automatic 482 

trajectory planning in the abdomen. We could show in a retrospective study that our system is 483 

capable of preventing the user from choosing trajectories which are likely to lead to complications 484 

during an intervention. According to radiological experts, the trajectories proposed by the planning 485 

system are useful  and valid for intervention. Only for one of the ten cases, the proposed path was 486 

rated poorly. Computation of a trajectory proposal based on an efficient implementation of the 487 

applied hard and soft constraints took about 9 seconds on average. The selection of an insertion path 488 

based on the proposal by the radiologist took 3 minutes on average.  489 

The presented approach was designed to be extendable and can easily be adapted for other body 490 

parts in a straightforward manner. As there are currently no constraints as for needle and patient 491 

position, constraints ensuring that e.g. the inserted needle still fits in the gantry of the CT scanner or 492 

the patient is always supposed to be in supine position can be added to the automatic path planning 493 

workflow in a straightforward manner. In fact, integration of such constraints was also proposed by 494 

the radiologists that used the system. Similar approaches from Villard and Baegert [17] or Schumann 495 

et al.[18] also concentrate on the computation of suitable insertion trajectories, but still depend on 496 

an appropriate weighting of the different constraints to achieve the desired planning result. Utilizing 497 

a pareto-based optimization, our approach is able to propose insertion trajectories without needing 498 
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weights. Furthermore, the suitability of the approaches of Baegert et al. and Schumann et al. to 499 

support radiofrequency ablations or biopsies have not yet been evaluated in a clinical study.  500 

As the state in the breathing cycle crucially affects both the poses and the dimensions of critical 501 

structures such as the lungs, it also has a high influence on the result of the planning. This could 502 

explain why only in six out of ten cases the chosen trajectories have been excluded by the system 503 

and that for two of the remaining cases no better trajectories could be found. We aimed to 504 

compensate for this by dilating the lung by the average lung movement. Incorporating a respiratory 505 

model for the lungs and the organs in the abdomen could possibly further improve the planning 506 

result. Furthermore, the respiratory states for intervention planning and needle insertion should be 507 

identical in future applications of the planning system. In this work we could not consider this issue 508 

due to the retrospective nature of the study. Nevertheless, the majority of the points of the insertion 509 

zone had a better rating by the distance to critical structures constraint compared to the chosen 510 

insertion point.  511 

The use of surface meshes for the computation of the insertion zones leads to a dependency on the 512 

quality and the resolution of the mesh. The tangency constraint requires smooth meshes, as the 513 

angle to the liver surface is computed using the surface normals. Especially the distance to critical 514 

structures constraint and the newly proposed RFA-umbrella constraint strongly depend on the 515 

resolution of the meshes, because all mesh points of the critical structures are considered for 516 

computation of the planning result. Thus, the resolution of the mesh has to be carefully chosen to 517 

find a balance between runtime and planning accuracy. The occlusion constraint, directly using 518 

graphics rendering for computation, is also limited by the resolution of the used screen. We are 519 

currently working on a so-called off-screen rendering, which allows performing the rendering on 520 

arbitrary sized, virtual screens.  521 

As a mesh representation of every critical structure is required for the trajectory planning, the fast 522 

segmentation of the liver, the critical structures, the skin and the target in the CT image, preferably in 523 
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an automatic way, remains an important problem. While the automatic segmentation of high 524 

contrast structures like bones and lungs can be done in an acceptable period of time, a precise 525 

segmentation of structures such as vessels, liver or kidneys can currently not be performed 526 

automatically in a reliable manner within less than one to a few hours, as they are usually performed 527 

with manual or semi-automatic segmentation methods. This is a problem if the planning CT is 528 

acquired within minutes before the intervention. Waiting for those segmentation methods to 529 

improve in efficiency, we can propose to use incomplete but fully automatic segmentation to provide 530 

a rough automatic planning which can then be refined using interactive methods such as the 531 

proposed slice-based correction tool. Furthermore, we are currently investigating a new visualization 532 

scheme for interactively refining the trajectory based on a GPU based volume visualization restricted 533 

to the possible insertion zones. For this purpose, we virtually remove the skin around the insertion 534 

point and thus provide a view along the trajectory which allows determining the quality of the path.. 535 

In further investigations, cases of needle insertions without complications should be considered to 536 

examine whether the system is able to confirm valid entry points. In an ongoing clinical study, we are 537 

currently investigating the quality of the planning results and the usability of the planning system 538 

together with interventional radiologists with experience in RFA. First results were presented in this 539 

work and showed that the system is able to propose safe trajectories. However, in four cases the 540 

umbrella constraint, which takes into account the shape of the RFA needle, had to be disabled in 541 

order for the radiologists to find a satisfactory path.  This may be attributed to the fact that only a 542 

rigid shape of the RFA umbrella is considered in the planning process, while in clinical routine the 543 

deployment of the umbrella’s spikes may vary to avoid hitting critical structures. Consideration of the 544 

portal vein for computing the planning proposal would further improve the result of the planning. 545 

Because some proposed trajectories were rated safe and technically good but difficult to perform by 546 

the interventional radiologist due to the big insertion angle and trajectory length, the integration of 547 

the automatic trajectory planning in a navigation system such as proposed  by Fichtinger et al. [28], 548 

Levy et al. [29] or Maier-Hein et al. [27] would be useful. These systems are potentially well-suited 549 



27 
 

for transferring relatively long trajectories to the patient, thus allowing giving high weight to the 550 

distance to critical structures constraint to prevent complications. This integration would also reduce 551 

the procedure time for navigated needle interventions where the trajectory planning turned out to 552 

be the most time consuming part [27]. Future work will also include embedding the system into the 553 

clinical IT workflow of a PACS system (e.g. the Chili system [30]) to simplify the transfer and the 554 

processing of the medical imaging data. 555 

In conclusion, the proposed trajectory planning approach clearly shows benefits compared to the 556 

current state-of-the-art planning in clinical routine. In contrast to the conventional planning, which is 557 

performed manually on the imaging data, our approach utilizes the three-dimensional information 558 

provided by the imaging modality in order to account for critical structures, angle of penetration, 559 

needle length, and needle shape. Thus, the system is able to quickly detect unsafe paths and propose 560 

safe trajectories during the planning which may especially be helpful for radiologists at the beginning 561 

or during their interventional training. We believe that our approach could improve the clinical 562 

procedure of needle insertions such as radiofrequency ablations or biopsies regarding complication 563 

rate and intervention time.  564 
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