
Interactive Handling of a Construction
Plan in CAD

Caroline Essert-Villard
Pascal Mathis

LSIIT, UMR CNRS 7005
Université Louis Pasteur de Strasbourg

Boulevard Sebastien Brant
67400 Illkirch, France

Solving geometric metric constraints is a topical issue in CAD. An origi-
nal way to solve a constraint system is to use geometric methods, provid-
ing a symbolic construction plan. Then, this plan can be numerically inter-
preted to generate the required figure. If multiple solutions are produced,
most solvers propose to scan the entire space of the solutions found, that is
generally tedious. This chapter shows how the inner properties of a sym-
bolic solver allow to deal more efficiently with this case. After briefly re-
calling our sketch-based selection method, that enables to easily eliminate
most of the solutions and to keep the only, or at the worst the few solutions
that have the best likeness with the original drawing, we introduce a new
step by step interpretation mechanism implemented as a debugger-like
tool, that allows to browse the remaining solutions tree in order to help
the user choosing the required solution.

1 Introduction

In Computer-aided design (CAD), a geometric object can be precise-
ly described by constraints. They concern distances between points,
angles between lines, tangency of circles and lines, etc. Generally,
constraints are declaratively placed by a user on a sketch. If we wish
to carry out calculations, simulations or manufacturing, the object
must really respect the constraints. Thus, a CAD system must be
able to solve them and give the possible solution figures. This kind
of approach was initiated by I.E. Sutherland [] with Sketchpad and
was then studied by many authors.

Whatever the approach, a constraint system does not usually de-
fine a single figure. In the case of a well-constrained system, the ex-
ploration of the solutions space is not as easy as it seems. In most
cases, CAD users only want one solution figure when they design an
object. That is why an important matter of geometric solvers is iden-
tifying the solution that is most consistent with the user's expecta-
tions, as we can see in [] and []. The most common response to this
problem is the use of heuristics to filter the results. When using a nu-
merical method, the constrained figure is compared with each of the
numerical solutions. This is generally characterized by slow run-
times, and there is often more than one solution left. Our symbolic
approach allows us to take advantage of the construction plan to
compare the sketch with a solution, and to define an easy-to-use de-
bugger-like tool if the solution space has even so to be explored.

The rest of the chapter is structured as follows. Section 2 presents
the constraint solving framework. Then, Section 3 explains a basic
construction plan evaluation. Section 4 shows how the sketch can be
used to find a good plan's evaluation and Section 5 how using inter-
active tools. Finally, Section 6 concludes.

2 Solving with YAMS

YAMS (Yet Another Meta Solver) is the prototype resulting from the
merging of the 3D topology-based geometric modeller TOPOFIL,
and a 2D geometric constraint solver. A precise description of the
modeller and of this association can be found in [], so we'll only
present here the solver part that supplies the \emph{construction
plans} on which we work.

The solver belongs to the family of symbolic solvers. The solving
process acts in two steps: first, a symbolic phase that produces a
construction plan according to the constraints; then a numerical
phase interprets this construction plan. The symbolic stage is obvi-
ously the most costly.

2.2 Solving the constraints

Constraints are predicative terms of the form P(x1,…, xn), where P is
a predicative symbol, and xi are typed identifiers of geometric ele-

ments. Then, denoting that the distance between a point p1 and an-
other point p2 is a length k1 can be written distpp(p1, p2, k1). About
thirteen different kinds of constraints exist in YAMS. Among them,
we distinguish metric constraints (such as distances, angles) and
Boolean constraints (such as incidence or tangency). Note that this
way of writing the constraints is quite usual, and can be found, for
instance, in [,].

During the symbolic solving, the numerical values of distances
and angles are not taken into account, whereas they are given by the
user with the rest of the constraints. They only appear in a symbolic
way in the constraints under the form of typed identifiers (for in-
stance k1 in the example above, to represent a length). The numeri-
cal values are associated to these identifiers by functional terms, in
definitions of the form: x := f(x1,…, xn), where x is the defined iden-
tifier, f a functional symbol, and xi the parameters that can be either
other identifiers or numerical values. For example, if the user impos-
es a length to be 100 units from point p1 to point p2, we express it
by a constraint distpp(p1, p2, k1) and a definition k1 := initl(100),
where initl initializes k1 to the value 100.

Fig. 1. A sketch with constraints (left) and identifiers association (right)

When capturing the data of a problem, these definitions are the first
lines of the construction plan (that is a list of definitions), that will
be supplemented during the symbolic solving with other definitions.
Let's take an example: Fig.1 shows the placing of the constraints on
a sketch, and the identifiers association. The symbolic transcription
of the constraints and the definitions for this problem are the follow-
ing:

Constraints

egal_p(p5, p4) onl(p1, l1)
centre(c2, p5) distpp(p1, p2, k2)
centre(c1, p4) distpp(p1, p3, k1)
radius(c2, k4) fixorgpl(p1, l1, p2)
radius(c1, k3) onc(p3, c1)
onc(p2, c1) onl(p3,l2)
onl(p2, l1) onl(p1, l2)

angle(p1, p2, p1, p3, a1)

Definitions
k4 = initl(200) k3 = initl(400)
a1 = inita(1.570796) k2 = initl(300)
k1 = initl(200) p1 = initp(0,0)
l1 = initd(p1,0) l2 = lpla(p1,l1,a1)
c3 = mkcir(p1,k2) p2 = interlc(l1,c3)
c4 = mkcir(p1,k1) p3 = interlc(l2,c4)
c2 = mkcir(p5,k4) p5 = centre_of(c1)

c1 = medradcir(p2,p3,k3)

Our solver gives a geometric answer to this problem, that has the ad-
vantage of producing several solutions. The construction plan given
above expresses the geometric construction yielded by the solver,
and describes, in the right order, the objects to build and the opera-
tions to apply so as to obtain a figure.

The numerical interpretation forms the subject of the rest of this
chapter. For more details on symbolic solving, see article [] that ex-
plains this part more precisely, notably the original general mecha-
nism of decomposition in subfigures and assembling that YAMS uses
to solve large systems.

2.3 Construction plan

In the construction plan, the list of definitions is presented in trian-
gular solved form, i.e. an identifier used as parameter in a definition
must have been defined earlier in the plan. Note that by switching
two definitions in a construction plan, it is possible to obtain an
equivalent one, as long as the result is still in triangular solved form.

In a general way, a set of definitions can be structured as a Direct
Acyclic Graph (DAG), called dependence graph. Its vertices are the

definitions, and its oriented edges makes a link from a definition
x = f(x1,…,xn) to a definition y = g(y1, …,x,…,ym). A topological
sort of a DAG gives a list of vertices such that a vertex does not ap-
pear in the list before its successors. For a DAG, there generally are
several possible topological sorts which, in our case, correspond to
the different possible construction plans. Note that all these possible
plans provide exactly the same solutions, after a numerical interpre-
tation.

Therefore, even if the solver gives a particular construction plan,
we can choose another order for the definitions, taking into account
the dependencies, without affecting the solutions.

3 Interpretation

3.2 Tree of solutions

In this stage, the data given by the user are exploited as parameters
for the numerical interpretation of the construction plan.

Each functional symbol is associated with a numerical function.
But interpretation of a functional term may provide multiple results.
For example, the intersection between two circles, symbolized by
intercc, generally produces two points, and medradcir that builds a
circle through two known points, with a known radius, generally
produces two different circles. So these are not simple functions, but
what we call multifunction, i.e. functions that can give more than
one result.

The existence of multifunctions in a construction plan introduces
choices in the interpretation process. So, we can consider the inter-
pretation as the building of a tree labeled with numerical values. The
interpretation of a multifunction that can produce up to k results gen-
erates a branching of degree k. By giving a numbering to the various
solutions produced by each multifunction, we number the branches
of the tree. At the end, the tree represents the solution space, and one
solution corresponds to the labels of one branch.

We have to distinguish two kinds of trees :

• the tree of the possible solutions, made by only taking into ac-
count the degrees of multifunctions, and whose number of
branches is maximum. This one is called tree of possibilities

• the tree of the effective solutions, made by interpretation with
real values parameters, and that may have less branches than
the tree of possibilities. This one is called tree of solutions

The difference is caused by several kinds of events that may occur
during the interpretation process. A multifunction may provide less
results because of particular data (for example if two circles are tan-
gent, the intersection has only one result), or even a “failure” (for
example if those circles have no intersection). In this last case, the
interpretation stops in the branch.

Note that practically, in our prototype, the tree is not really built
but explored by a depth-first backtracking.

Fig. 2. Construction plan corresponding to Fig.1 and tree of solu-
tions

3.3 Problems due to a high number of solutions

Even if the tree of solutions is lighter than the tree of possibilities,
the number of solutions can be very important, and increases with

the length of the construction plan (that depends on the number of
geometric entities of the sketch). That is why, at first, we would like
to minimize the size of the tree, in order to speed up the backtrack-
ing used to explore the tree.

A first pruning can be done by eliminating what we call the “false
solutions”. Actually, the computed construction plan enables to con-
struct all the solutions as well as other figures which are not consis-
tent with the constraints, because the geometric solver only uses nec-
essary conditions to make the construction. This can be done with a
simple test, by verifying if the constraints are satisfied.

Fig. 3. The generated solutions

The figures corresponding to the branches of the tree given in the
previous section on Fig. 2 are shown on Fig. 3. Four of these solu-
tions (numbered 3, 4, 5 and 6) can quickly be eliminated because the
sign of angle a1 is the opposite of what is given in the constraints.
Moreover, among the remaining solutions, we can eliminate #7 and
#8 that are identical to #1 and #2 apart from displacements.

But that may be insufficient. In the example presented on Fig. 5,
there are 32768 different solutions for a geometric object made of 15
equilateral triangles figure, but the solution space can not be reduced
because all of the figures are consistent with the constraints. Other
heuristics are necessary to drastically prune the tree of solutions,
eliminating the figures that does not look like the sketch.

4 Using the sketch

4.2 Usual criteria of likeness

Likeness is generally defined as conformity in appearance between
things. Two figures are usually said to look like each other if some
geometric properties are similar, such as:

• orientation of points,
• relative placing of objects,
• angles acuteness,
• convexity of some parts of the figure.

This definition is used in most of the CAD frameworks to elimi-
nate inappropriate solutions.

However, most of these criteria can be held in check by some sim-
ple examples. For instance, Fig. 4 illustrates that sometimes we are
not able to decide between two solutions by only comparing the geo-
metric properties : in this figure, all angles are acute and all points
have the same relative placing and orientation.

Fig. 4. Lack of discrimination criterion

4.3 Freezing of a branch

In order to eliminate a maximum number of solutions that do not
look like the sketch, we proposed another definition of likeness (see
[]). This definition is based on the notions of geometric homotopy,
continuous deformation of a constrained system, and continuous
numbering of the solutions.

For each metric multifunction we use in our solver, we described
a particular continuous numbering of its distinct results. This contin-
uous numbering allows us to use an original method to find the fig-
ure that has the best likeness with the sketch.

We first make an interpretation of the construction plan, using as
parameters the data measured on the sketch drawn by the user. This
interpretation produces a tree of solutions, among which lies the
branch corresponding to the sketch. We memorize the number of
this branch. Then, it only remains to make another interpretation, us-
ing the user's data as parameters, and to follow the branch which
number has been memorized. With the properties we explained be-
fore, we are sure that the figure we found has the same geometric
characteristics than the sketch, and looks like it in the sense that we
defined. We call this process freezing of a branch. The branch is se-
lected and its number is kept for further interpretation, with new nu-
merical values for the parameters. The other branches of the tree are
not cut, so the other solutions are not lost and can be examined later.

This method gives very good results when all the multifunctions
used in the construction plan are metric. As an example, Fig. 5
shows a sketch made up of fifteen adjacent triangles. The lengths of
all their sides are asked to be equal to a given dimension. This kind
of configuration was studied by Owen [], and is known to have 2p-2

distinct solutions, where p is the number of points. In our case, with
17 points, we obtain 32768 solutions (triangles are often superposed,
because their sides are equal). Some of them are presented on Fig. 6.
The corresponding construction plan has 80 definitions, and the sys-
tem contains 94 constraints. It takes more than 1 minute to calculate
all possible solutions, whereas our method gives an instantaneous
good answer, presented on Fig. 7.

Fig. 5. 15 triangles configuration: the sketch

Fig. 6. Five solutions among 32768 to “15 triangles”

Fig. 7. The required solution of the sketch given on Fig. 5

However, our method is not appropriate when Boolean constraints
(such as tangency or equality between objects) are present in the
construction plan. Indeed, it is impossible to compare the solutions
with the sketch when some information is missing in the sketch. Ac-
tually, unlike metric constraints that don't affect topology, these con-
straints are generally not respected on the sketch.

Because of these Boolean constraints, some systems have a tree of
solutions that can not be reduced to a single branch. Its number of
branches can be decreased down to a few branches, but there still re-
mains a little subtree to be explored. It may also happen that the user
is not satisfied with what the solver found, whether the sketch he
drew was not precise enough, or he did not expect such a solution
for the constraints he gave. For all these reasons, the user may want
to interactively explore, either the subtree of solutions, or the rest of

the entire tree of solutions, and to examine solutions that are close to
the frozen branch.

5 Interactive solution refining

All the above reasons led us to propose some functionalities to ex-
plore the solution space within YAMS. Remember this solution space
is not simply a set of figures, but a structured space. The solutions
tree and the construction plan structures we use offer us the possibil-
ity to define an exploration tool, inspired by debug tools provided by
most of the development systems in software engineering.

5.2 A step by step interpretation

First, remind that in the case where the user wants to explore the en-
tire solution space, the number of solutions (i.e. of branches in the
tree) can be very important. So, viewing the solutions one after the
others may be a tedious task.

Suppose that the figure is not yet numerically computed. A good
way to browse efficiently the solutions can be to explicitly choose,
at each branching of the tree, which branch to follow, thanks to a
step by step interpretation.

However, there are two kinds of definitions. Some definitions cor-
respond to objects that can be seen by the user. In the rest of this
chapter, they will be called sketch definitions. Some other definitions
correspond to auxiliary objects. For instance circles that are used to
find a point, by making an intersection with a line. They will be
called auxiliary definitions. As the geometric entities defined by
auxiliary definitions are not drawn on the screen, it is difficult to
choose which values to keep for them. Moreover, the user is not in-
terested in the construction of intermediate objects, that has to be
completely transparent to him. So, an idea is to make a step in the
interpretation only at the sketch definitions.

At each step, we work on a layer (see Fig. 8). In the layer, the last
definition is a sketch definition, and the others are auxiliary defini-
tions. The different possible values for the concerned object are pro-
posed, and the user can choose one of them. It means that for this
operation, a little subtree is explored. This subtree contains a few

branchings corresponding to the auxiliary definitions within the lay-
er to which a multifunction of degree > 2 is assigned. So, a back-
tracking is done into this layer, but this backtracking is hidden from
the user, in order to make it transparent. Then, when a interpretation
is chosen for the current sketch definition, the corresponding branch
is frozen in this layer. See Fig. 8, where the branch that has been
frozen so far is in bold, the current studied layer is between dashed
lines, and the visible objects in the sketch are framed.

Fig. 8. Backtracking on a little subtree, included in a layer of the solu-
tions tree

The construction plan may not be provided by the solver in the best
form for this operation. It can be necessary to perform a topological
sort of the plan before the step by step interpretation.

Indeed, we need to have the following criterion on the construc-
tion plan: let d1 and d2 be two sketch definitions, d1 being placed
before d2 in the construction plan, such that no other sketch defini-
tion exists between d1 and d2. Then, all definitions between d1 and
d2, that are obviously auxiliary definitions, are the remaining defini-
tions that are necessary to compute d2 and that have not been re-
quired before d1.

In order to obtain such a form, we have to sort the construction
plan. The topological sort is made by placing first the sketch defini-

tions following the current order, and then interleaving the auxiliary
definitions just before the first sketch definition that needs it (i.e.
that contains it as an argument).

When a construction plan verifies the above criterion, the only
backtracking to be done is located in the subtree between d1 and d2,
excluding d1. If the user is not satisfied with the numerical interpre-
tations proposed for d2, and wishes to see other possible solutions,
then we are sure that some of the sketch definitions have to be
thrown back into question.

1st step 2nd step

3rd step end of interpretation

Fig. 9. Interpretation in 3 steps, and final result
In such a case, we browse the sketch definitions that have been de-
fined earlier, and on which d2 depends. We suggest to the user to re-
consider some of the values he had chosen for these previous sketch
definitions. First, we propose him to review only a few of them,
those that are placed closer in the tree. Then, progressively we put
into consideration more definitions, including those that were de-
fined a longer time ago.

On Fig. 9, we can see a step by step interpretation of the con-
strained sketch of Fig. 1. At each step ((a), (b), or (c)), the user

chooses one of the two available results. The part of the figure that
has already been frozen is in thick, the chosen value is in thin, and
the value that was not accepted is in dashed line.

5.3 Our debugger-like tool

The method exposed above is implemented as a module of YAMS,
named SAMY and the user has the choice to use it or not, and to start
it when he needs.

Practically talking, we draw the solution step by step as the inter-
pretation goes along. For each new object drawn on the solution fig-
ure, the corresponding part of the sketch is highlighted. This way,
the user can easily follow the construction process. At each step,
SAMY proposes a set of possible choices for the current object to be
drawn. When the user chooses one, it is constructed on the figure
and SAMY goes on to the next step.

On Fig. 10, we can see a snapshot of our debbugger-like tool
based on this step by step interpretation method, where a rail support
is being constructed. The figure represents one of the intermediary
steps of the construction. The dialog box on top left of the figure al-
lows the user to direct the interpretation by choosing a solution for
each multifunction with arrows, and then to continue.

Figure 11 presents the final step of the interpretation, with the so-
lution entirely built thanks to the process.

Fig. 10. Step by step interpretation of a rail support

Fig. 11. Solution of the rail support

Note that, in order to be easier to use, the step by step process can be
combined with the branch freezing. Then, every time a multifunction
is reached, the first solution proposed to the user is the one that
would have been automatically chosen by the freezing of a branch.

6 Summary

In this chapter, we first exposed our symbolic approach of geometric
constructions for CAD constraints solving. We explained that our
prototype YAMS provides a general construction plan, that is after-
wards numerically interpreted. Then, after showing how we can
prune the solution space represented by a tree, we put forward the
remaining problems that led us to find a way to easily browse the so-
lutions tree.

As a solution, we proposed a tool that is based on the idea of a
step by step numerical interpretation. This debugger-like tool is used
in case the pruning method did not manage to find one unique solu-
tion because of the presence of Boolean constraints, or in case the
user is not satisfied with the solution. This mechanism can be en-

hanced with several kinds of breakpoint tools. Moreover, it is possi-
ble to offer the opportunity to freeze a part of a tree of solutions be-
tween two breakpoints, and then to skip this part as if it was a big
step.

The debugger-like tool we presented in this chapter is the first of a
series of exploration tools. Other tools, like the interactive manipula-
tion of a yet computed solution, allow a further more intuitive ap-
proach of the selection problem. On the basis of a solution, a user
could drag a misplaced element of the figure towards one of the po-
sitions allowed by the tree of solutions [].

References

1. Aldefeld B. (1988) Variations of geometries based on a
geometric-reasoning method. Computed-Aided Design.
20(3):117-126

2. Bertrand Y. and Dufourd J.-F. (1994) Algebraic specification of
a 3D-modeller based on hypermaps. Computer Vision – GMIP.
56(1):29-60

3. Bouma W., Fudos I., Hoffmann C., Cai J. and Paige, R. (1995)
Geometric constraint solver. Computer-Aided Design. 27(6):
487-501

4. Brüderlin. (1988) Automatizing proofs and constructions.
Proceedings of Computational Geometry’88. LNCS 333,
Springer-Verlag. 232-252

5. Dufourd J.-F., Mathis P. and Schreck P. (1997) Formal
resolution of geometric constraint systems by assembling.
Proceedings of the ACM-Siggraph Solid Modelling Conference.
ACM Press. 271-284

6. Essert-Villard C., Schreck P. and Dufourd J.-F. (2000) Sketch-
based pruning of a solution space within a formal geometric
constraint solver. Artificial Intelligence. Elsevier. 124:139-159

7. Essert-Villard C. (2002) Helping the designer in solution
selection: applications in CAD. Proceedings of ICCS 2002.
LNCS 2330, Springer-Verlag. 2:151-160

8. Lamure H. and Michelucci D. (1995) Solving constraints by
homotopy. Proceedings of the ACM-Siggraph Solid Modelling
Conference. ACM Press. 134-145

9. Owen J. (1991) Algebraic solution for geometry from
dimensional constraints. Proceedings of the 1st ACM Symposium
of Solid Modelling and CAD/CAM Applications. ACM Press.
397-407

10. Sutherland I.E. (1963) Sketchpad: A man-machine graphical
communication system. Proceedings of the IFIP Spring Joint
Computer Conference. 329-36

