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Abstract

Purpose Deep brain stimulation (DBS) is a procedure requiring accurate target-
ing and electrode placement. The two key elements for successful planning are
preserving patient safety by ensuring a safe trajectory and creating treatment ef-
ficacy through optimal selection of the stimulation point. In this work, we present
the first approach of computer-assisted preoperative DBS planning to automat-
ically optimize both the safety of the electrode’s trajectory and location of the
stimulation point so as to provide the best clinical outcome.

Methods Building upon the findings of previous works focused on electrode trajec-
tory, we added a set of constraints guiding the choice of stimulation point. These
took into account retrospective data represented by anatomo-clinical atlases and
intersections between the stimulation region and sensitive anatomical structures
causing side effects. We implemented our method into automatic preoperative
planning software to assess if the algorithm was able to simultaneously optimize
electrode trajectory and the stimulation point.

Results Leave-one-out cross-validation on a dataset of 18 cases demonstrated
an improvement in the expected outcome when using the new constraints. The
distance to critical structures was not reduced. The intersection between the stim-
ulation region and structures sensitive to stimulation was minimized.

Conclusions Introducing these new constraints guided the planning to select loca-
tions showing a trend towards symptom improvement, while minimizing the risks
of side effects, and there was no cost in terms of trajectory safety.
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1 Introduction

Many symptoms of neurological disorders resistant to drug therapy, especially
motor symptoms such as those in Parkinson’s disease, can be treated by deep
brain stimulation (DBS). This treatment consists of a surgical intervention where
one electrode per hemisphere is placed into a certain nucleus located deep in
the brain, e.g. the subthalamic nucleus (STN) or globus pallidus internus (GPi),
through a hole drilled in the skull. Each electrode is connected to a pacemaker
that permanently sends electrical impulses to stimulate the nucleus with a high-
frequency signal.

This operation has proven its efficacy for more than 15 years not, yet the
preoperative planning stage remains a particularly time consuming and delicate
task, which requires high expertise, performed while the patient is awake and
already prepared for the intervention with the stereotactic frame fixed on the
head. To reduce discomfort for the patient, the procedure needs to be quick. The
nucleus to be stimulated is only a few millimeters long, so high targeting accuracy is
crucial. The trajectory must be safe and avoid the multiple surrounding vessels and
anatomical structures to prevent hemorrhages and side effects that can result from
lesions on sensitive tissues. The treatment also has to be effective, i.e., maximize
benefits and minimize the side effects caused by stimulating inappropriate regions.
Given this context, automatic assistance for trajectory planning provides valuable
help designed to quickly define electrode trajectories as well as their tip positions
and anticipate outcomes. However, most automatic planning methods proposed so
far focused solely on ensuring the safety of the proposed path.

Several approaches have been proposed in the literature to help surgeons in the
preoperative decision-making process. Some proposed visualizing tools to present
relevant information, such as accessibility maps [28]. Many have tried to automa-
tize the preoperative planning stage of the intervention. The early planning tools
of a decade ago involved numerous manual interventions [7,16,23,30,36]. More re-
cently, approaches requiring less interaction have emerged [8,5,31,15,33,34]. Sev-
eral methods focused on maximizing the distance between the candidate trajectory
and surrounding at-risk structures [8,33]. Others accounted for a larger variety of
placement rules, classified as hard or soft constraints [5,4,15,34]. Regardless of
the method, these approaches have primarily focused on optimizing trajectories,
along with feasibility and safety, while simply ensuring that the stimulation point
(usually one of the metallic contacts of the electrode) is inside the targeted nucleus
without optimizing its exact position within the nucleus.

According to various studies [32,35,19,25] symptom improvement strongly de-
pends on how accurately you target the stimulated brain area. Changing the lo-
cation of the active contact within or around the nucleus may provide different
clinical results, whereas the signal coverage of some brain tissues can also cause
severe side effects [9,25,27]. That is why accurately selecting the contact point
location proves highly relevant in DBS.
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In 2015, Pallavaram et al. proposed new integrated software able to automat-
ically suggest a reasonable stimulation location [31]. This location was chosen
among the most frequently used clinical active contact positions, based on the
segmentation of electrodes from postoperative CT images. In their retrospective
study, a point of high probability was defined as a combination of clusters of clin-
ical active contact positions, projected onto the patient’s image. However, their
proposition of clinical active contact positions appears to be based solely on how
often the point was selected by a multidisciplinary surgical team, without consider-
ing actual patient outcomes. This method, contrary to the approaches mentioned
above, focused solely on selecting the stimulation point, regardless of the trajec-
tory. Earlier, in 2014 the same team reported a retrospective study involving a
trajectory planning algorithm algorithm [24] that was quite similar yet with a
fixed stimulation point.

In 2012, Bériault et al. proposed an approach integrating a model of the DBS
electric field from multiple active contacts [6]. Their planning approach was based
on computing the optimal intensity allowing for the best possible coverage of the
targeted anatomical structure by the stimulated volume, while avoiding a patient-
specific side-effect area (such as internal capsule). In that work, the electrode tip
position was fixed beforehand.

In our previous works, we introduced a fully modular geometric constraint
solving approach for preoperative trajectory planning. This enables easy writing,
updating or extending of the multiple constraints used for any considered inter-
vention type. This approach has been tested for various surgeries [2,20], including
DBS [15]. For some operations, such as liver surgery, the default constraints al-
ready account for the treatment’s safety and efficacy by optimizing both needle
trajectory and tip position. For DBS, however, the constraints we used over the
electrode were mainly focused on minimizing risks (such as avoiding sulci or ven-
tricles), and maximizing the number of contacts in the targeted structure. The
objective of the present work was to improve our previous method by redefining
the way the tip of the DBS electrode is placed. After numerous discussions with
neurosurgeons and a careful analysis of clinical results, we have implemented a
new set of constraints that optimize selection of a stimulation point location in
terms of clinical outcome, within or in the vicinity of a predefined target structure
chosen by the neurosurgeon.

In this paper, we present an approach covering both aspects of preoperative
planning: 1) optimize the trajectory; 2) optimize the stimulation point location for
a predefined target structure. For this purpose, the optimization process uses an
anatomo-clinical atlas correlating clinical data with the coordinates of activated
electrode contacts [22], as well as a simplified representation of the volume of tissue
stimulated by the electrical signal. In this approach, the problem is solved using
multi-objective optimization where the electrode trajectory and stimulation point
are optimized simultaneously. One can argue that their sequential optimization
(e.g., finding an optimal target location before the trajectory) may reduce the op-
timization complexity. However, in the previous work [18], we demonstrated that
multi-objective optimization has manageable complexity and provides fast com-
putation. In addition, choosing the target point before searching for the trajectory
may, in some cases, exclude very good trajectories as a consequence. On the con-
trary, another stimulation point with almost similar but very slightly less optimal
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quality may enable a much better trajectory and increase the overall quality of
the solution.

First, we introduce the notions of anatomo-clinical atlases and volume of tissue
activated used in new constraints for stimulation point selection (Sections 2.1 and
2.2, respectively). Then, in Section 2.3, we briefly describe our trajectory opti-
mization method. Sections 2.4 and 2.5 present the stimulation point optimization
methods using new constraints. Section 2.6 describes our retrospective validation
study, with Section 3 presenting the results obtained. The discussion and conclu-
sion are the last two sections.

2 Materials and Methods

2.1 Anatomo-Clinical Atlases

Neurologists use different rating scales of clinical scores to evaluate symptom sever-
ity and treatment efficacy. Each scale is dedicated to a specific symptom or as-
pect of quality of life. The Unified Parkinson’s Disease Rating Scale (UPDRS)
is the most widely used for DBS. It is divided into five parts, enabling to assess
the disease’s impact on several criteria: mood, speech, swallowing, dressing, and
walking. The third part (UPDRS III), dedicated to motor evaluation, is the most
frequently assessed. Other rating scales are also used, such as MATTIS for de-
mentia, STROOP for cognitive functions, or the Hoehn and Yahr (H&Y) scale for
symptom progress evaluation.

The concept of an anatomo-clinical atlas (ACA), related to clinical scores,
was first proposed and fully described in 2013 by Lalys et al. [22]. In brief, an
ACA is a predictive map that can be visualized as a normalized representation
that associates stimulated points in a 3D space with patients’ clinical scores for a
particular rating scale, based on a retrospective study of images of patients who
underwent DBS. This map can be represented as a gray-scale 3D image. Fig. 1
illustrates examples of UPDRS III atlases for the GPi. The below example was
computed using the database we used in our study, detailed in Section 2.6.

For our study, an ACA for one clinical score was built using the following
process. A multi-subject magnetic resonance imaging (MRI) template was created
from a population of Parkinson’s patients along with basal ganglia segmentation
[17]. The MRIs were registered to this template using a combination of linear and
non-linear registrations [21,26]. The electrodes and their contacts were segmented
from the postoperative CT images registered to the corresponding preoperative
MRIs, in order to express their coordinates in the same coordinate system as for
the anatomical structures. Then, for each patient, a degree of improvement or
worsening (DIW) was defined by taking the difference between the clinical scores
attributed to the patient when stimulation was ON and OFF. Since the patient’s
state may also deteriorate (in cases involving disease aggravation despite stimula-
tion), the DIW can have both positive and negative values. To account for different
evaluation scales, the DIW values were brought to the interval [-1,1], where -1 is
the worst possible deterioration and 1 the best possible improvement, according
to a given scale. The DIW of each patient was associated with a simplified esti-
mation of the corresponding volume of tissue activated (VTA), i.e., the part of
the brain stimulated by the current (see Section 2.2). Finally, each voxel in ACA
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Fig. 1 Visualization example of one preoperative MRI slice, with the UPDRS III ACA for
both GPi. The nuclei are represented as green 3D triangular meshes, while the ventricles and
internal capsules as gray and pink meshes respectively. The computed ACA has been registered
to the patient’s anatomy, projected on the MRI slice, and represented as a colored map. The
right figure provides a closer view at the region of interest, without the internal capsules and
ventricles for a better visibility.

was associated with the average DIW corresponding to all the simplified VTAs
that included this voxel. The ACA values theoretically lie within the range [-1,1].
Nevertheless, such values are actually never reached because they correspond to
extreme situations that never happen. So, in practice, they are bound by the best
and worst DIWs found in the set of patients used to construct the atlas. In this
work, we used ACA to guide the tip of the electrode, as described in Section 2.4.

2.2 Volume of Tissue Activated

The VTA is an estimate of the volume and shape of the distribution of electrical
signal stimulating brain tissues when the contact is activated. In practice, the VTA
is determined by a composition of multiple settings of the electrode contacts and
pulse generator, e.g., the number and locations of activated contacts, impedance,
voltage, pulse width, or frequency. Several research works [10–12] have proposed
methods to compute and model a realistic shape of the VTA. However, one study
[37] demonstrated that approximating the VTA as a spherical shape emitted from
a point source is a valid simplification for monopolar stimulation. In the present
study, we focused on the electrode placement algorithm instead of computing its
numerical model, and used a simplified representation as a sphere with a 3 mm
radius, henceforth referred to as sVTA. As the optimization algorithm we present
here is completely independent from the VTA shape, it would be very easy to
modify this shape, either by changing the radius of the sphere or replacing the
approximation by a more complex and realistic VTA model.

The therapeutic effect depends on which brain area is stimulated. While ana-
lyzing atlases, we noted that stimulating the regions lying slightly outside of the
targeted structure or on its borders (Fig. 2) can at times be prove more effective
in terms of clinical outcome than stimulating only the structure’s central parts.
Thus, when using ACA to locate a good stimulation point, we allowed contacts
to be beyond the targeted structure. Given this scenario, the stimulation may af-
fect nearby sensitive anatomical structures. For example, in the case of GPi, an
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effective target region is located close to the internal capsule (Fig. 3), which neu-
rosurgeons tend to avoid as its stimulation may cause motor side effects [3]. Hence,
that is the reason why some interventionist aim to minimize of the intersection of
the sVTA with such identified anatomical structures. This issue was addressed in
Section 2.5.

Fig. 2 Intersection of the sVTA (half transparent yellow sphere around the electrode) with
the internal capsule (large pink 3D mesh in the back) while targeting the GPi (small green 3D
mesh in the front) using an ACA

Fig. 3 Two candidate trajectories targeting the GPi (small green mesh). The trajectory (grey
cylinder) that is closer to the observer is planned without using the ACA. Its sVTA (yel-
low sphere) is mostly centered on the targeted GPi. The farther trajectory (blue cylinder) is
planned using the ACA. Its sVTA (red sphere) is shifted with a large part outside the GPi.
The right image shows a section of the scene where an intersection between the sVTA of the
second trajectory and the internal capsule (large pink contour) can be observed.
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2.3 Optimization of the Trajectory: Global Approach

In this section, we briefly recap our previously published approach [15], on which
the present method is based. It consists in fixing a set of surgical rules defined by
experienced neurosurgeons for a particular intervention. The rules are transformed
into geometrical constraints, formalizing them in the form of mathematical expres-
sions. The original constraints described in [15] were based solely on anatomical
considerations. In the rest of this paper, they will be referred to as anatomical
constraints. These constraints are divided into two groups: hard constraints, i.e.,
Boolean expressions to satisfy, and soft constraints, i.e., cost functions to optimize
as far as possible. An optimal trajectory is proposed after two distinct phases.

The first phase solves the hard constraints, for instance not damaging the sulci
(i.e., not to pass through). This phase basically consists in checking the Boolean
conditions on each part of the candidate insertion surface and eliminating non-
feasible parts. This enables us to define the safe insertion zone by eliminating the
unfeasible candidate entry points.

The second phase solves the soft constraints (e.g., maximazing the distance to
the sulci). It consists in solving a multiple objective optimization problem. Each
of the n soft constraints is associated with 1) a cost function fi(T ) : R5 → [0, 1],
where T (x, y, z, α, β) is a trajectory defined by a point (x, y, z) ∈ R3 and ori-
entation (α, β) ∈ R2, and 2) a weighting factor wi reflecting the importance of
this particular constraint over the others. The result of the cost function provides
an estimation of trajectory T ’s quality with respect to the soft constraint i. A
trajectory is considered optimal regarding a constraint when the value of its cost
function is minimal. All cost functions are formulated in such a way as to express a
constraint as a minimization problem, with results within range [0, 1]. The weight-
ings were empirically defined by experienced surgeons. In this study, we made the
choice to transform the multi-objective problem into a single objective problem
by using a weighted sum of the cost functions. The optimum is expressed by a
trajectory Topt minimizing the global aggregative cost function F : R5 → [0, 1]:

F (T ) =

∑n
i=1 wi · fi(T )∑n

i=1 wi
(1)

Prior to optimization, an initialization with a rough estimation of trajectory
samples from the first phase is performed in order to ensure good convergence [1].
Then, the optimization is performed by minimizing function F (T ), using the down-
hill simplex method introduced by Nelder and Mead [29]. Following optimization,
the electrode tip is positioned at the point enabling soft constraint optimization.

One of the constraints used in the original approach described in [15] was
fixed in such a way to maximize the number of electrode contacts in the target
structure. As mentioned earlier, optimizations using such a constraint usually guide
the tip point to inside the targeted structure. The following sections explain how
we modified the process to guide the tip towards the best expected stimulation
points, given that forcing the tip inside the targeted structure does not necessarily
maximize the treatment’s impact.
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2.4 Atlas-guided Optimization of the Stimulation Point

In order to guide the planning of the tip position more accurately for the best
possible outcome, we propose adding new soft constraints related to the tip posi-
tion for the optimization process. These new constraints are optimized along with
the initial anatomical constraints. The maximization of the number of electrode
contacts inside the predefined targeted structures is no longer used, but replaced
by the information from ACA, as described below.

First, we define the function returning the value of the atlas As of clinical
score s at a specific voxel as ACA : R3 → [−1, 1]. Representing the atlas values in
the range [-1,1] allows a more intuitive reading and understanding of the atlas by
surgeons. However, in the automatic optimization process, for a fair comparison
with all other anatomical constraints, it is necessary to normalize the As values
within the same specific range of [0, 1]. We define the normalized anatomo-clinical
atlas (N-ACA) using equation 2.

N -ACA(AS , p(T )) =
ACAmax −ACA(As, p(T ))

ACAmax −ACAmin
=

1−ACA(As, p(T ))

2
, (2)

where ACA(As, p(T )) is the value corresponding to the atlas As at the voxel lo-
cated at the contact point p(T ) of the considered candidate trajectory T ; ACAmin

and ACAmax correspond to the theoretically possible maximal and minimal values
of any ACA: -1 and 1.

To guide the tip towards the best location of a single atlas, we define a new cost
function using the N-ACA. For a clinical score s, the corresponding normalized
cost function fAS

: R5 → [0, 1] simply returns the value of the N-ACA at the
location of the active contact point p(T ) : fAS

(T ) = N -ACA(As, p(T )).
Using the new cost function fAS

(T ) in equation (1), the global cost function
F (T ) to minimize becomes:

F (T ) =

(∑n
i=1 wi · fi(T )

)
+ wAS

· fAS
(T )(∑n

i=1 wi

)
+ wAS

(3)

where fi(T ) and wi are the cost function and the weighting factor of each anatom-
ical soft constraint i, n is the number of anatomical soft constraints, and fAS

(T )
and wAS

are respectively the normalized cost function and weighting factor chosen
by the neurosurgeon, corresponding to the atlas of clinical score s.

2.5 VTA-guided Optimization of the Stimulation Point

When using the ACA constraint, the tip can be guided to outside the targeted
structure. An active contact point placed in such a location may stimulate nearby
structures and cause potential side effects. In the second part of our work, we
focused our attention on avoiding stimulating nearby structures. We introduce
another type of constraint based on the computed intersection between the sVTA
and a 3D mesh.

One suitable constraint is added for each nearby structure to avoid its stim-
ulation. The constraint can express that the structure needs to be completely or
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only partially avoided, with a defined maximum intersection. As for other soft
constraints, each inspected trajectory is penalized in proportion to how much it
violates of the constraint. If the constraint is respected, the trajectory is not dis-
criminated by the solver.

The new intersection volume (IV) soft constraint states that for any trajectory
T , the intersection volume Is(T ) between its sVTA and the structure s to avoid
should be less than or equal to xs% of the total sVTA volume. When xs = 0, the
structure is avoided completely. The mathematical expression of the associated
cost function fIs is written as:

fIs(T ) = max

(
Is(T )− xs
100− xs

, 0

)
(4)

Equation 4 enables a normalized representation of the IV constraint: the result
of fIs ranges from 0 when Is(T ) < xs% to 1 when Is(T ) is 100% of the sVTA.
This constraint can be included in the global cost function as follows:

F (T ) =

(∑n
i=1 wi · fi(T )

)
+ wAR

· fAR
(T ) + wIs · fIs(T )(∑n

i=1 wi

)
+ wAR

+ wIs
(5)

where wIs is the weight given to the IV constraint for structure to avoid s.

2.6 Input Data and Experiments

To validate our method, we conducted a retrospective study on a dataset of Parkin-
son’s disease patients from the University Hospital Rennes Pontchaillou (Rennes,
France). The cases were randomly selected from a subset of patients who under-
went stimulation of the GPi. The goal of this study was to analyze the influence
of two types of information on the results of the preoperative planning process:
anatomo-clinical atlas and intersection of the sVTA with other structures. Only
one clinical score, UPDRS III, was used in this study, in order to avoid bias in
validation due to the mutual influence of scores. Its ACA will be referred to as
AUP. The minimization of the intersection between the sVTA and internal capsule
was investigated. The intersection will be referred to as IIC. Our surgeons defined
the maximal tolerance of xIC as equal to 20% of the sVTA volume lying within
the internal capsule.

The validation process consisted in comparing trajectories obtained by differ-
ent types of planning between them. We considered three types of planning for
comparison:

P1: planning with anatomical constraints only, as proposed by the previous
method described in Section 2.3,
P2: planning with anatomical constraints + ACA constraint,
P3: planning with anatomical constraints + ACA constraint + IV constraint.

For all three types of planning, the anatomical constraints to minimize were
those previously described in more detail in [14]:
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• “ST”: orientation of the electrode, computed as the proximity to the stan-
dard trajectory defined by expert neurosurgeons and commonly used in the
commercial platforms.
• “DS”: distance from the electrode to the the closest sulcus.
• “DV”: distance from the electrode to the ventricles.

Cost function fST associated to soft constraint ST was defined as equation (6),
where T is a candidate trajectory and TS is the standard trajectory:

fST =
angle(T, TS)

90
(6)

The associated cost functions of DS and DV constraints were built on the model
of equation (7), where T is a candidate trajectory, AS the anatomical structure
to avoid (sulci or ventricles), DminAS the distance at which the trajectory is
considered safe regarding structure AS:

fDAS
= max

(
DminAS − dist(T,AS)

DminAS
, 0

)
(7)

These cost functions have been formulated so that they can express the con-
straint as a minimization problem, and their result is within the range [0,1].

Their associated weighting factors were set to the typical default values chosen
by our neurosurgeon: wST = 0.2, wDS = 0.4 and wDV = 0.4 for ST, DS and DV
constraints, respectively. Note that this setting can be modified in the GUI and
the result is updated instantaneously.

For the new ACA and IV constraints, we tried different settings of weight-
ing factors to analyze their impact. For planning type P2 (described above), the
weightings w1

AUP
= 0.1, w2

AUP
= 0.5 and w3

AUP
= 0.9 were alternatively assigned

to the ACA constraint. For the planning type P3, when testing both the atlas and
intersection volume constraints, we also assigned the same three weight values to
the IV constraint. Thus, we tested nine different weighting combinations of Wm,n

that represent the use of wm
AUP

and wn
IIC , as listed in Table 1.

We denote Timp as the trajectory of the implanted electrode and TP1, TP2,
and TP3 as the optimal trajectories produced with plannings P1, P2, and P3,
respectively. We defined the following comparison criteria:

C1: comparison of the ACA values between computed trajectories TP1, TP2,
and TP3

C2: comparison of the intersection volumes IIC(TP1), IIC(TP2), and IIC(TP3)
in terms of percentage of the sVTA volume covering internal capsule,
C3: comparison of the minimal distances from the trajectories to the ventricles
and sulci, representing trajectory risk degree.

For this study, we disposed of a dataset of nine patients undergone bilateral
stimulation, resulting in 18 test cases. Each patient underwent 3T T1-weighted
MRI and CT scans just before the intervention, then postoperative CT scans a
few days after. The preprocessing of the images was performed using the pyDBS
pipeline described in [13], successively involving denoising, bias correction on MRI,
CT image registration to preoperative MRI, automatic segmentation and 3D mesh
reconstructions. In the same coordinate system, we obtained 3D triangular meshes
of all structures of interest in the brain (including the GPi, ventricles, sulci, skin,
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Table 1 Tested weighting combinations

Combination Combination Weight w∗AUP
of Weight w∗IIC of

# notation ACA constraint IV constraint
1 W1,1 0.1 0.1
2 W1,2 0.1 0.5
3 W1,3 0.1 0.9
4 W2,1 0.5 0.1
5 W2,2 0.5 0.5
6 W2,3 0.5 0.9
7 W3,1 0.9 0.1
8 W3,2 0.9 0.5
9 W3,3 0.9 0.9

and internal capsule), as well as implanted electrodes (segmented from postop-
erative CTs) and locations of active contact points. Note that in the absence of
angiography, we used the sulci mesh to avoid vessels, as often performed in clin-
ical routine. In addition, we used UPDRS III scores acquired 3 months prior to
surgery (Dopa OFF) and 6 months after (stimulation ON, Dopa OFF) in order to
compute a DIW for each patient.

We applied a leave-one-out cross-validation approach, computing an UPDRS
III atlas for each patient using the DIW of all other patients. The worst DIW was
equal to -0.115, and the best to 0.543, within the maximum range of [-1,1]. The
ACA was then registered to the preoperative MRIs using nonrigid registration.
We computed optimal trajectories for planning types P1, P2 and P3, and then
measured their value in the ACA (representing the expected DIW), intersection
volumes, and distances to critical structures.

3 Results

The results of our retrospective study are summarized in Tables 2, 3, 4, and 5.
Table 2 presents the comparison according to criterion C1. ACA values for the
trajectories obtained using two different planning methods are shown: 1) the orig-
inal planning method P1, and 2) the new planning method P2 using the ACA
constraint with different weighting factors P2-w1

AUP
, P2-w2

AUP
, P2-w3

AUP
. In this

table, the DIW obtained from the actual UPDRS III scores ON/OFF of each
patient when stimulating using the implanted electrode Timp is provided for infor-
mation. Table 2 also displays an equivalence of the actual and expected average
improvements in the UPDRS III scale for the implanted electrodes and planned
trajectories, respectively. Contrary to DIW, an improvement in UPDRS scale sig-
nifies a decrease in score, thus explaining the negative values in the table.

A two-tailed Student’s t-test was used to test the statistical significance be-
tween the DIW of trajectories pairwise with the null hypothesis that the methods
return identical values. In all cases, the electrode placement proposed by the new
planning P2 obtained higher scores than P1 which used anatomical constraints
only. These results were statistically significant for the three versions of P2, p-
values of 0.00592 for P2-w1

AUP
, 0.00028 for P2-w2

AUP
, and 0.00025 for P2-w3

AUP
,

all of which notable being under the threshold of 0.01.
Table 3 summarizes the average values and standard deviations of all DIW

corresponding to computed trajectories for each of the nine weighting combinations
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Table 2 Actual DIW for the implanted electrodes Timp, expected DIW extracted from ACA
values for the trajectories proposed by plannings P1, P2-w1

AUP
, P2-w2

AUP
and P2-w3

AUP
, and

equivalence of the average improvement and its standard deviation in the UPDRS III scores

Case Implented P1 P2
# Timp TP1 TP2-w1

AUP

TP2-w2
AUP

TP2-w3
AUP

values in DIW/ACA scale
1 -0.101 0.188 0.188 0.233 0.233
2 -0.101 0.193 0.199 0.199 0.199
3 -0.086 0.179 0.350 0.350 0.252
4 -0.086 0.140 0.196 0.243 0.226
5 0.343 0.064 0.187 0.354 0.354
6 0.343 0.174 0.174 0.183 0.183
7 -0.115 0.176 0.291 0.291 0.291
8 -0.115 0.146 0.174 0.193 0.193
9 0.343 -0.115 0.405 0.405 0.405
10 0.343 0.123 0.286 0.180 0.180
11 0.200 0.176 0.212 0.233 0.350
12 0.200 0.150 0.343 0.343 0.343
13 0.086 0.204 0.204 0.405 0.405
14 0.086 0.185 0.187 0.343 0.343
15 0.543 0.176 0.343 0.336 0.343
16 0.543 0.139 0.155 0.166 0.174
17 0.157 0.106 0.133 0.254 0.254
18 0.157 0.140 0.204 0.221 0.221

AVG 0.152 0.141 0.235 0.274 0.275
STD 0.223 0.073 0.080 0.080 0.080

equiv. in UPDRS III scale
AVG -10.7 -9.9 -16.5 -19.2 -19.2
STD 15.6 5.1 5.6 5.6 5.6

Table 3 Average DIW and standard deviations for trajectories proposed by planning P3 using
nine different weighting combinations Wm,n for ACA and IV constraints.

W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,3

AVG 0.219 0.214 0.214 0.265 0.240 0.238 0.262 0.252 0.242

STD 0.068 0.061 0.061 0.074 0.057 0.059 0.070 0.061 0.057

of planning type P3. We can see that, on average, P3 also provided better scores
than P1 (all p-values < 0.01).

When analyzing the results of the comparison with criterion C2, we first ob-
served that the sVTA of three implanted electrodes (cases 1, 5 and 10) partially
entered the internal capsule, with IIC(Timp1) = 5.83%, IIC(Timp5) = 12.44% and
IIC(Timp10) = 5.59%, respectively. All were under the fixed threshold xIC = 20%.
Planning type P1 produced no intersection. Planning P2 (using the ACA con-
straint) increased their frequency, as expected. Such intersections were observed
in 12 of all 18 cases for at least one of the tested weighting factors (see Table 4,
columns P2). Of these, six intersections with IIC(TP2) > 20% were detected, one
even approaching to 100% (highlighted in bold). This emphasizes the necessity
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Table 5 Average minimal distances to the sulci and ventricles for the implanted trajectories
Timp and trajectories proposed by the planning types P1 and P3-W2,3

Min. distance to sulci (mm) Min. distance to ventricles (mm)

Timp TP1 TP3-W2,3 Timp TP1 TP3-W2,3

AVG 2.451 8.712 8.952 7.950 11.603 11.852

STD 1.397 2.132 2.287 2.212 1.531 1.352

of adding a restricting constraint minimizing the intersection between the sVTA
and internal capsule. Table 4 also shows the intersection volume IIC for all exper-
imented weightings of P3. We can first notice that higher values for the weighting
factor of the atlas (rightmost block) led to a higher number of intersections, which
were particularly extensive. Secondly, we observe a decrease of the overall number
of intersections using P3 compared to P2.

The most advantageous weighting combination for planning P3 would increase
the DIW and decrease the IIC. Thus, we measured a ratio R between the average
DIW and IIC for each combination so as to determine the best one. Fig.4 illustrates
the R values for each weighting combination Wm,n. A large gap can clearly be
observed between W2,3 and the other settings. This analysis led us to state that
a probable reasonable choice would be close to the combination w2

AUP
= 0.5 and

w3
IIC = 0.9, thus enabling maximally-reduced intersections while preserving good

DIW. However, this first study has only considered a small set of representative
weights with a low, medium and high values. Further analysis would be required
to recommend appropriate weights with more accuracy.

To confirm that our new planning approach does not reduce safety, we present
the minimal distances to the sulci and ventricles for trajectories Timp, TP1, and
TP3-W2,3

in Table 5. We can observe that the average minimal distances for P1
and P3-W2,3 were relatively similar (p-values > 0.05 demonstrating that there was
no statistically significant difference), with even higher values than for Timp. This
shows that our new approach increases the chances of improving outcomes while
preserving safety by providing a higher DIW than with the previous approach,
yet avoiding the surrounding sensitive structures. An example of the results of
different planning types can be found in Fig.5.

All experiments were performed on a computer equipped with an intel Core
i5 processor at 2.67GHz, 12GB RAM, and a NVIDIA GeForce GTX 275 graphics
card. For each case, the overall planning process took less than 3 seconds for P1
and P2, and less than 10 seconds for P3. The code for computing new target-based
constraints was executed on CPU only, with no optimization, thus enabling further
acceleration.

4 Discussion

Due to our new approach, we are able to automatically compute safe and opti-
mal electrode placements, improving expected treatment efficacy by taking into
account previous outcomes. Anatomo-clinical atlases help inform and boost the
decision-making process for choosing the best stimulation point in an effort to
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W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,3

Fig. 4 Ratio R illustrating the benefits of each weighting combination for planning type P3

Fig. 5 Results of different planning types for the same patient: P1 (left electrode and sVTA),
P2 (right electrode and sVTA), and P3 (middle electrode and sVTA). We can observe no
intersection with the internal capsule for P1, a large intersection for P2, and a relatively small
intersection for P3.

maximize benefits, while computing the intersection between the sVTA and inter-
nal capsule helps minimize side effects.

In practice, the atlas values lay within the interval [-0.155; 0.543], bound by the
best and the worst DIW of the patients used to build the atlases. For cases #15
and #16, when the patient had the highest DIW of 0.543 for Timp, our software
could not propose a trajectory with a similar DIW, as using the leave-one-out
approach meant the atlas was constructed without this patient. This means that,
in this particular case, the maximal DIW was 0.343, the second best of all values.
This value was the highest we could expect from the solver. If there had been
any greater DIW in the atlas, our solver would potentially have proposed a better
solution for this case. An atlas built with more cases would, evidently, lead to a
better sampling of the solution space.
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The IV constraint was designed so that only an intersection greater than 20%
would be detected by the solver. This means it should not detect a difference
between two small intersections, yet in Table 4 we can observe that we minimized
the IIC even for small intersections by increasing the weighing factor for the IV
constraint. This phenomenon is associated with the optimization algorithm we
used. The increase in wIIC moved the electrode tip away from the internal capsule
by pushing the solver to explore more solutions with small intersections during
the execution of the optimization algorithm.

The shape used in this study to represent the VTA was not exact or simulated,
but approximated by a 3-mm radius sphere, as this study focused on the placement
algorithm. However, the approach we proposed is generic and applicable to any
kind of VTA shape when computing the intersection volume. As a matter of fact,
the VTA shape changes in time together with the conductivity of a patient’s
brain tissues. In our software, it is possible to replace the sphere mesh either by
a computed model [9] or a sphere of variable radius, which can be determined
interactively or by a constraint designed to maximize the benefits and lower the
risks according to the placement. Moreover, the proposed technique is generic
enough to be easily used when multiple contacts are activated on the electrode, by
using an aggregation of meshes to represent the VTA and compute the intersection
volume.

Our software offers the opportunity to interactively adjust the weighting factors
of the constraints. As with most tools offering computerized assistance in the
decision-making process, it aims to help the surgeon make decisions, providing as
much information as possible and suggesting solutions, without imposing settings
or results. This is the reason why we proposed some default values in this study
for the weighting factors, though these can be adjusted in real time during the
planning according to each patient’s needs and specificities. To propose the default
values, we tried three sample weightings for each constraint. While further studies
will be needed to define the most appropriate values more accurately, we believe
that this can already provide a good starting point for surgeons. We also proposed
in [18] an alternative optimization approach based on Pareto front that does not
require the definition of weightings for each constraint in order to obtain one
particular trajectory, proposing rather a whole set of optimal solutions. Another
option to help the surgeon calibrate the tool is to perform a statistical study in
order to learn the most appropriate parameters on past cases, and set them as
default, as we previously proposed in [14].

If the patient suffers from multiple symptoms of different types, the surgeon
may want to consider multiple atlases for defining the stimulation point. Moreover,
all the considered clinical scores may hold different significance in the decision.
The definition of the constraints depends on neurosurgeon’s choice and patient’s
situation, usually being a trade-off between benefits and losses and highly patient-
specific. Here, we face a multi-objective problem as well, with different weightings
that need to be adjusted by the neurosurgeon. Although not detailed in the paper,
our software proposes the possibility of combining atlases. The resulting multi-atlas
is computed as the weighted sum of all individual N-ACAs. A further study would
allow for investigation of this functionality relevance and appropriate validation.

With the use of an anatomo-clinical atlas, our software can also serve as a sim-
ulation tool to have a rough estimation of the expected outcome for the patient
in relation to a clinical score. However, for now an ACA should not be seen as a
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mathematical formula that can give an accurate prediction of an outcome for a
specific stimulation point, but rather as a map that correlates stimulation loca-
tions with a trend towards improvement or worsening of a clinical score. Thus, our
algorithm proposes to automatically guide the target point towards locations with
most promising trend. Yet, a separate study has to be conducted to prove correct-
ness of the constructed ACA. The quality of the brain structures segmentation and
atlas-to-patient registration may also affect the ACA accuracy and optimization
results. For instance, GPi is known to have lower contrasts on T1w MRI compli-
cating its correct segmentation. However, as shown in [17], the registration method
used in this work provides satisfactory results with strong Dice-Kappa coefficients
from 0.64 to 0.86 for different brain structures. Since effective stimulation locations
represent nucleus regions rather than isolated points, this registration accuracy is
sufficient for bringing the optimizer in the desired area. As the ACA score is only
one of the optimization objectives, a better registration would not significantly
change the optimization results.

One limitation to the use of such atlases is that they represent an average across
a population, and do not take into account the various phenotypes of patients. In
future works, using separate atlases for different clusters of population could be
considered to avoid this bias.

5 Conclusion

We presented the first automatic optimization approach for the preoperative plan-
ning of DBS electrode trajectories that simultaneously optimizes the target point
location and electrode trajectory. Extending our previous approach optimizing
electrode trajectory, we imposed two additional constraints over the tip of the
electrode, helping to more accurately define its location. The first was based on
anatomo-clinical atlases and used to improve the outcome of the operation and
have a more positive impact to the patient’s state, based on the study of previous
cases. The second minimized the influence of the electric signal on surrounding
anatomical structures to reduce possible side effects. Compared to our previous
approach, this retrospective study confirmed that our new method proposed solu-
tions with higher scores and minimal signal intersections with the internal capsule,
while keeping the trajectory at a safe distance from critical structures.
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