Selecting a figure using S-homotopy in a CAD system

C. Essert-Villard, P. Schreck, J.-F. Dufourd

LSIIT, UPRES-A CNRS 7005
Université Louis Pasteur de Strasbourg, France
essert,schreck,jfd@dpt-info.u-strasbg. fr

Abstract: In CAD systems, formal geometric solvers allow to scan the entire space of the solutions
found for a constrained sketch drawn by the designer. We introduce a sketch-based method that
enables to easily eliminate most of the solutions and to keep the only, or at the worst the few
solutions that have the best likeness with the original drawing.

Keywords: formal geometric constructions; constraint solving; tree pruning; computer-aided design

1 Introduction

In Computer-Aided Design (CAD), drawing con-
strained figures and automatically solving them
are subjects that have been studied by many
authors, but that still remain topical. In geo-
metric modeling, constraints bring a precise de-
scription of geometric properties that must be
respected by the object. Two main classes of
solving constraints can be distinguished: numer-
ical approaches and formal methods. The first
ones are often chosen, and consist in solving nu-
merically the equation system related to the di-
mensions [2, 6, 8, 9]. A formal resolution of
the symbolic constraint system offers the advan-
tage of efficiently manipulating the defined fig-
ure by varying parameters values [1, 3]. Unfor-
tunately, algebraic tools for formal calculus are
much too general to be efficient for that purpose.
We gave priority to a both formal and geometric
approach, that was materialized by a software
called YAMS [4, 7].

Whatever the approach, a constraint system
doesn’t usually define a single figure. Indeed, the
existence of polynomial equations whose degree
is higher or equal to 2, on an algebraic point of
view, or of multiple intersections, on a geometric
point of view, quickly leads to a combinatorial
explosion of the number of solutions. In most
cases, CAD users only want one solution figure
when they design an object. That’s why an im-

portant matter of geometric solvers is identify-
ing the solution that is most consistent with the
user’s expectations, as we can see in [2] and [6].
The most common response to this problem is
the use of heuristics to filter the results. When
using a numerical method, the constrained fig-
ure is compared with each of the numerical so-
lutions. This is generally characterized by slow
runtimes, and there is often more than one so-
lution left. Our formal approach allows us to
take advantage of the construction program to
compare the sketch with a solution.

The rest of the paper is organized as follows.
Section 2 outlines our formal approach of con-
straints solving, and the relating notions. Sec-
tion 3 exposes our vision of likeness between fig-
ures, and a structuring of the solutions space.
Section 4 presents a method to choose the in-
tended figure amongst many solutions. Section
5 deals with restrictions that apply to it, and the
way to solve particular cases. Section 6 shows
some results provided by our technique, and Sec-
tion 7 concludes.

2 Geometric constraints system
solving

We now present the solver part of YAMS, which
acts in two stages, a symbolic one and an inter-
pretative one.

2.1 Symbolic resolution

In the first stage, given a dimensioned sketch,
the solver associates the geometric objects with
some identifiers, then turns the constraints into
formal parameters to form the geometric con-
straint system S = (X, A,C), where X is
a set of unknowns, A a set of parameters,
and C' a set of constraints of the form C =
{p1 (X, A),....,pm(X, A)} where each p;(X, A) is
a predicative term, namely a constraint, whose
variables are in X or in A.

Then, according to the constraints, YAMS
produces definitions that ensure correspondence
between functional terms and identifiers. The
definitions are brought together forming a gen-
eral construction plan, that is the result of the
formal phase. This plan indicates how and in
what order the geometric objects must be built
to produce the figure. More formally, a plan T is
a result of a symbolic resolution of a constraint
system S if T is a triangular solved system, and
S =T, that is S and T have the same solutions.
Using instantiation of parameter symbols in A
with values of any tuple u, we obtain S, = T,.

2.2 Interpretative stage

In the second stage, the original dimensions are
used as parameters for the numerical interpreta-
tion of the construction plan. Since used func-
tional terms may provide multiple results, each
functional symbol is associated with a numerical
multifunction. For example, the intersection be-
tween a line and a circle, symbolized by interle,
may produce two points.

Once values are assigned to the parameters,
we can consider the interpretation as the build-
ing of a tree labeled with numerical values. Each
interpreted definition produces a branching. At
the end, the tree called solutions tree represents
the solution space, and one solution corresponds
to the labels of one branch. Even if, obviously,
this tree is not really built in practise but ex-
plored by backtracking [5], it may increase fast
and be very wide. Thus, it is useful to precisely
number the solution.

Actually, the computed construction plan en-

ables to construct all the solutions as well as
other figures which are “false solutions”. The
false solutions can quickly be eliminated thanks
to a simple test, as they are not consistent with
the constraints. But that may be insufficient.
On the example presented on Fig.1, there are
32768 different solutions for a geometric object
made of 15 equilateral triangles figure (each seg-
ment corresponds to an equally constrained dis-
tance), but the solution space can’t be reduced
because all of the figures are consistent with the
constraints. Some of them are presented on Fig.2
(some triangles may be superimposed). Other
heuristics are necessary to drastically prune the
tree of solutions, eliminating the figures that
doesn’t look like the sketch.

Figure 1: 15 triangles configuration : the sketch

Figure 2: Four solutions among 32768 to 715
triangles”

3 Using the sketch’s data to
prune the tree of solutions

Our purpose is to obtain a single solution figure
that bears the best resemblance to the original
drawing. First, let us define what we mean by
saying a figure looks like another.

3.1 Usual criteria of likeness

Two figures are often said to look like each other
if they have some geometric properties in com-
mon, such as relative placing of points, lines and
circles, angles acuteness, and convexity of some
parts of the sketch. We only notice that most
of these properties comparisons can be held in
check by some simple examples : on Fig.3 b),
all angles are acute and all points have the same
relative placing so we can’t decide ; on Fig.4, the
sketch has a convexity flow with respect to the
solution.

a) sketch

X
b) solutions /\ /\

Figure 3: Lack of discrimination criterion

<

a) sketch

b) solution

Figure 4: Convexity flaw

3.2 Homotopy as a notion of likeness

When considering only topological properties,
the continuous deformation between two para-
metric curves called homotopy is an usual like-
ness concept. Of course, this definition is much
too general for us because it doesn’t take into
consideration elementary geometry properties of
the objects, particularly their type. For exam-
ple, a circle is homotopic to a triangle, and this is

meaningless for CAD users. So, we have to refine
this characterization in a geometric framework.

With the help of a coordinates system, we can
define a metric topology, from which a notion of
proximity follows. Now we can give our defini-
tion of geometric homotopy, that is a continuous
transformation that preserves incidence relation-
ships and geometric types (such as points, lines,
ete.).

However, geometric homotopy does not take
into account the constraint systems. We have to
refine the notion in this sense.

3.3 Constrained deformation

If we want to study continuous deformations of
a dimensioned figure, not only have we to define
the continuous deformation of a figure, but also
of its constraint system. So we introduce the
definition of continuous deformation of a con-
straint system S as the continuous deformation
preserving the number of solutions of S and of
every well-constrained sub-system of 5.

Thus, we can link this notion with the continu-
ous geometric deformation of a figure. If there is
a continuous deformation v between two differ-
ent instances S, and S, of a constraint system,
and a continuous deformation ¢ between two fig-
ures e and f that are respectively solutions of
Sy and S,, and if V¢ € [0,1], ¢(¢) is a solution
of Sy, then we say that there is a geometric
homotopy between e and f with respect to the
constraint system S, in short a S-homotopy.

Note that, the deformation of the constraint
system must not reach any degenerate case, be-
cause if that occurs we can swap to another so-
lution instead of always following the same one.
This leads us to give a numbering for multifunc-
tions values, compatible with the continuous de-
formation of the constraint system, which we de-
fine as continuous numbering.

Now that we exposed our vision of likeness and
numbering, we will be able to make the link be-
tween these notions, by saying that two figures e
and f are S-homotopic if and only if they have
the same number in their solutions tree. In addi-
tion, given a sketch e, there is at most a unique
f such that e and f are S-homotopic.

3.4 Practical numbering

We also notice that some geometric properties
characterize the discrimination between the val-
ues of a multifunction. Then, for every multi-
function we currently use in our solver, we de-
scribed such a geometric characteristic. For ex-
ample, the results of mkcir/, that yields a circle
co tangent to a given circle ¢y, are differentiated
by the placement of ¢y with respect to ¢, inside
or outside. The degenerate case is reached when
¢1 has a radius equal to zero.

These geometric properties are preserved
through a continuous deformation, so they allow
us to define a continuous numbering.

4 Freezing of a branch

We put forward the hypothesis that all the ex-
pectations of the designer are in his constrained
sketch.

We first point out the fact that the sketch can
be seen as a particular solution of the constraint
system instantiated by the values read on the
sketch. So, it corresponds to a particular branch
of the tree of solutions, that we call the sketch
branch. Then, we suppose that the user gave
a sketch and some constraints that look like his
expectations, that is, in the sense we defined ear-
lier, there is a continuous deformation between
the sketch and the solution. Thus, if we can
find a solution having the same number than the
sketch, then we advance the idea that it is the
intended solution.

The operation consisting in storing the num-
ber of the sketch branch is called freezing of a
branch. We this number is known, we can launch
an interpretation with the given dimensions,
guided by the number of the frozen branch.

One of the advantages of this method is its
speed. Indeed, instead of potentially comparing
some geometric properties of all the objects of
the figure with each other, we only compare, at
each junction of the tree, the objects that are
brought into play in the concerned multifunc-
tion. Since the treatment is made as the inter-
pretation goes along, this method reduces signif-
icantly the processing time in comparison with

a systematic method. An example of a result
provided by this method can be seen on Fig.5.
It shows the single solution found by using the
freezing of a branch on the constrained sketch
given on Fig.1.

Figure 5: The required solution of the sketch
given on Fig.1

Let us note here that, as geometric criteria on
multifunctions are dependent on lines orienta-
tion. This orientation of all objects is computed
from the sketch and the user’s constraints.

5 Discussion

The method we exposed in previous section
works fine when all constraints are metric. But
another type of constraints is also used in YAMS:
boolean constraints. As examples, we can cite
tangency, or equality of objects. In the case of
boolean constraints, some information is miss-
ing to find the intended solution. Actually, un-
like metric constraints that don’t affect topology,
these constraints are not always respected on the
sketch, as shown on Fig.6 and 7: on the sketch,
the circle is actually not tangent to the line con-
trary to the constraints given by the user.

Figure 6: Tangency problem : the sketch

In these situations, two general approaches
can be considered, those correcting the sketch
to fit the previous conditions, and those produc-
ing several branches giving a small subtree to

C1

Figure 7: Two possibilities for tangency

explore. The first one has not yet been stud-
ied, but it may consist in interpreting the con-
struction plan with the data read on the sketch
by correcting the inconsistent objects as they go
along. For example, on Fig.6, the sketch could
be modified in such a way that the circle be-
comes tangent to the line. Among the two pos-
sible circles given by the construction plan, we
choose the one that is closest to the circle on the
sketch, in the sense of Euclidean distance over
the coordinates.

The second approach consists in making a
maximum freezing, that means keeping all the
possible solutions if it is not possible to decide.
The result is a frozen subtree that can be ex-
plored thanks to some tools provided by the soft-
ware. Among these tools, we can cite classical
geometric heuristics to prune and/or classify the
branches of the remaining subtree, algorithmic
tools to make faster the complete or a partial ex-
ploration of the solution space (hash table, intel-
ligent backtracking, reduction of the complexity
of the tree, etc.), and an user friendly interface.

A first tool of this user friendly interface is in-
spired by debug tools provided by most of the de-
velopment systems in software engineering. This
is possible because our approach is formal and
we have a construction plan. So it is easy to do
a step by step evaluation, allowing the user to
choose, at each fork, a value among the avail-
able results. This simple mechanism can be en-
hanced with several kinds of breakpoint tools,
like in Prolog. Moreover, it is possible to offer
the opportunity to freeze a part of a solution
tree between two breakpoints, and then to skip
this part that has become a big step.

We also intend to implement a second class of
tools, that is based on the idea of a magnetic

grid. It allows a more intuitive approach of the
selection problem. On the basis of a solution
that doesn’t fit the user’s expectations, he can
drag the misplaced element of the figure until
one of the positions allowed by the tree of solu-
tions.

6 Results

In order to illustrate our method, we expose
here a quite representative example. The sketch
on Fig.8, showing a lever, comes with 106
constraints including 2 tangency constraints,
tgel(cl, 1) and tgel(e3,12). Note that to lighten
the figure, we avoided to represent the con-
straints by arrows.

Figure 8: Sketch of the lever

i

Figure 9: Solutions for the lever

Using these constraints, the solver produces
a construction plan, containing 252 definitions.
As among these definitions, 29 have an arity of
2, the tree of possibilities of this constraint sys-
tem has 2% = 536870912 branches. Actually,
some branches lead to an interpretation failure,
and others can be eliminated with a simple con-
straints verification, so the tree of solutions pro-

vided by the interpretation stage only has 160
branches.

Our method allows to prune significantly the
tree of solutions, providing a four-branched sub-
tree. The remaining solutions can be seen on
Fig.9. Among the four figures, the part that re-
mains unchanged corresponds to the metric con-
straints, and the uncertain part corresponds to
the two tangency constraints. It is not possi-
ble to have only one solution since the tangency
constraints are not respected on the sketch. To
prune the subtree, we have implemented classic
heuristics such as relative placing of circles and
lines. With these heuristics, we found the in-
tended solution, that is the bottom-left part of
Fig.9.

7 Conclusion

In this paper, we exposed our formal approach
of geometric constructions, that yields a con-
struction plan from a dimensioned sketch. Then,
we defined a notion of likeness coming from the
topological homotopy notion called S-homotopy.
This allows us to define in some way what is the
structuring of the solution space of a constraint
system. We also proposed a method to select one
solution amongst many, by freezing a branch of
the tree of solutions with the help of the sketch.

This method works fine while all constraints
are metric, as we shown on some simple exam-
ples. However, as the limits of our method were
clearly identified, we studied some tools to ex-
plore the solution tree, and to help the user to
find the intended solution.

In previous papers [4, 5], we exposed that a
symbolic solving has many advantages. Here we
showed that it is also useful for solutions selec-
tion or exploration. Various debugging tools will
soon be implemented, and we plan to develop an
intuitive graphic interface to deal with them.

Further work is needed to analyze more in de-
tail the structuring of solutions space. For ex-
ample, in the case of articulated systems anima-
tion, one of the problems is the crossing of dead
points. This problem is linked with some de-
generate cases, and with the transition from one

branch to another in the tree of solutions.

References

[1] B. Aldefeld. Variations of geometries
based on a geometric-reasoning method.
Computer-Aided Design, 20(3):117-126,
1988.

W. Bouma, I. Fudos, C. Hoffmann, J.
Cai, and R. Paige. Geometric constraint
solver. Computer-Aided Design, 27(6):487-

501, 1995.
[3] B. Briiderlin. Constructing three-
dimensional geometric objects defined

by constraints. Proceedings of the ACM
Siggraph Workshop in Interactive 3D
Graphics, p.111-129, 1986.

[4] J.-F. Dufourd, P. Mathis, and P. Schreck.
GGeometric construction by assembling
solved subfigures. Journal of Artificial In-
telligence, 99(1):73-119, 1998.

[5] C. Essert, P. Schreck, and J.-F. Dufourd.
Interprétation d’'un programme avec mul-
tifonctions géométriques. Proceedings of
6emes journées de I’AFIG, Dunkerque,
France, p.223-232, 1998.

[6] H. Lamure and D. Michelucci. Solving
constraints by homotopy. Proceedings of
the ACM-Siggraph Solid Modelling Con-
ference, p.134-145, 1995, ACM Press.

[7] P. Mathis. Un systeme de résolution
de contraintes par assemblage en
modélisation géométrique, Ph.D. Thesis,
Université de Strasbourg, 1997.

[8] J. Owen. Algebraic solution for geometry
from dimensional constraints. Proceedings
of the 1st ACM Symposium of Solid Mod-
elling and CAD/CAM Applications, p.397-
407, 1991, ACM Press.

[9] G. Sunde. Specification of shape by dimen-
sions and other geometric constraints. Pro-
ceedings of the Eurographics Workshop on
Intelligent CAD systems, Noordwisjker-
out, 1987.

