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tionIn Computer-Aided Design (CAD), drawing 
on-strained �gures and automati
ally solving themare subje
ts that have been studied by manyauthors, but that still remain topi
al. In geo-metri
 modeling, 
onstraints bring a pre
ise de-s
ription of geometri
 properties that must berespe
ted by the obje
t. Two main 
lasses ofsolving 
onstraints 
an be distinguished: numer-i
al approa
hes and formal methods. The �rstones are often 
hosen, and 
onsist in solving nu-meri
ally the equation system related to the di-mensions [2, 6, 8, 9℄. A formal resolution ofthe symboli
 
onstraint system o�ers the advan-tage of eÆ
iently manipulating the de�ned �g-ure by varying parameters values [1, 3℄. Unfor-tunately, algebrai
 tools for formal 
al
ulus aremu
h too general to be eÆ
ient for that purpose.We gave priority to a both formal and geometri
approa
h, that was materialized by a software
alled YAMS [4, 7℄.Whatever the approa
h, a 
onstraint systemdoesn't usually de�ne a single �gure. Indeed, theexisten
e of polynomial equations whose degreeis higher or equal to 2, on an algebrai
 point ofview, or of multiple interse
tions, on a geometri
point of view, qui
kly leads to a 
ombinatorialexplosion of the number of solutions. In most
ases, CAD users only want one solution �gurewhen they design an obje
t. That's why an im-

portant matter of geometri
 solvers is identify-ing the solution that is most 
onsistent with theuser's expe
tations, as we 
an see in [2℄ and [6℄.The most 
ommon response to this problem isthe use of heuristi
s to �lter the results. Whenusing a numeri
al method, the 
onstrained �g-ure is 
ompared with ea
h of the numeri
al so-lutions. This is generally 
hara
terized by slowruntimes, and there is often more than one so-lution left. Our formal approa
h allows us totake advantage of the 
onstru
tion program to
ompare the sket
h with a solution.The rest of the paper is organized as follows.Se
tion 2 outlines our formal approa
h of 
on-straints solving, and the relating notions. Se
-tion 3 exposes our vision of likeness between �g-ures, and a stru
turing of the solutions spa
e.Se
tion 4 presents a method to 
hoose the in-tended �gure amongst many solutions. Se
tion5 deals with restri
tions that apply to it, and theway to solve parti
ular 
ases. Se
tion 6 showssome results provided by our te
hnique, and Se
-tion 7 
on
ludes.2 Geometri
 
onstraints systemsolvingWe now present the solver part of YAMS, whi
ha
ts in two stages, a symboli
 one and an inter-pretative one.



2.1 Symboli
 resolutionIn the �rst stage, given a dimensioned sket
h,the solver asso
iates the geometri
 obje
ts withsome identi�ers, then turns the 
onstraints intoformal parameters to form the geometri
 
on-straint system S = (X;A;C), where X isa set of unknowns, A a set of parameters,and C a set of 
onstraints of the form C =fp1(X;A); : : : ; pm(X;A)g where ea
h pi(X;A) isa predi
ative term, namely a 
onstraint, whosevariables are in X or in A.Then, a

ording to the 
onstraints, YAMSprodu
es de�nitions that ensure 
orresponden
ebetween fun
tional terms and identi�ers. Thede�nitions are brought together forming a gen-eral 
onstru
tion plan, that is the result of theformal phase. This plan indi
ates how and inwhat order the geometri
 obje
ts must be builtto produ
e the �gure. More formally, a plan T isa result of a symboli
 resolution of a 
onstraintsystem S if T is a triangular solved system, andS � T , that is S and T have the same solutions.Using instantiation of parameter symbols in Awith values of any tuple u, we obtain Su � Tu.2.2 Interpretative stageIn the se
ond stage, the original dimensions areused as parameters for the numeri
al interpreta-tion of the 
onstru
tion plan. Sin
e used fun
-tional terms may provide multiple results, ea
hfun
tional symbol is asso
iated with a numeri
almultifun
tion. For example, the interse
tion be-tween a line and a 
ir
le, symbolized by interl
,may produ
e two points.On
e values are assigned to the parameters,we 
an 
onsider the interpretation as the build-ing of a tree labeled with numeri
al values. Ea
hinterpreted de�nition produ
es a bran
hing. Atthe end, the tree 
alled solutions tree representsthe solution spa
e, and one solution 
orrespondsto the labels of one bran
h. Even if, obviously,this tree is not really built in pra
tise but ex-plored by ba
ktra
king [5℄, it may in
rease fastand be very wide. Thus, it is useful to pre
iselynumber the solution.A
tually, the 
omputed 
onstru
tion plan en-

ables to 
onstru
t all the solutions as well asother �gures whi
h are \false solutions". Thefalse solutions 
an qui
kly be eliminated thanksto a simple test, as they are not 
onsistent withthe 
onstraints. But that may be insuÆ
ient.On the example presented on Fig.1, there are32768 di�erent solutions for a geometri
 obje
tmade of 15 equilateral triangles �gure (ea
h seg-ment 
orresponds to an equally 
onstrained dis-tan
e), but the solution spa
e 
an't be redu
edbe
ause all of the �gures are 
onsistent with the
onstraints. Some of them are presented on Fig.2(some triangles may be superimposed). Otherheuristi
s are ne
essary to drasti
ally prune thetree of solutions, eliminating the �gures thatdoesn't look like the sket
h.
Figure 1: 15 triangles 
on�guration : the sket
h

Figure 2: Four solutions among 32768 to "15triangles"
3 Using the sket
h's data toprune the tree of solutionsOur purpose is to obtain a single solution �gurethat bears the best resemblan
e to the originaldrawing. First, let us de�ne what we mean bysaying a �gure looks like another.



3.1 Usual 
riteria of likenessTwo �gures are often said to look like ea
h otherif they have some geometri
 properties in 
om-mon, su
h as relative pla
ing of points, lines and
ir
les, angles a
uteness, and 
onvexity of someparts of the sket
h. We only noti
e that mostof these properties 
omparisons 
an be held in
he
k by some simple examples : on Fig.3 b),all angles are a
ute and all points have the samerelative pla
ing so we 
an't de
ide ; on Fig.4, thesket
h has a 
onvexity 
ow with respe
t to thesolution.
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a) sketch b) solutionFigure 4: Convexity 
aw3.2 Homotopy as a notion of likenessWhen 
onsidering only topologi
al properties,the 
ontinuous deformation between two para-metri
 
urves 
alled homotopy is an usual like-ness 
on
ept. Of 
ourse, this de�nition is mu
htoo general for us be
ause it doesn't take into
onsideration elementary geometry properties ofthe obje
ts, parti
ularly their type. For exam-ple, a 
ir
le is homotopi
 to a triangle, and this is

meaningless for CAD users. So, we have to re�nethis 
hara
terization in a geometri
 framework.With the help of a 
oordinates system, we 
ande�ne a metri
 topology, from whi
h a notion ofproximity follows. Now we 
an give our de�ni-tion of geometri
 homotopy, that is a 
ontinuoustransformation that preserves in
iden
e relation-ships and geometri
 types (su
h as points, lines,et
.).However, geometri
 homotopy does not takeinto a

ount the 
onstraint systems. We have tore�ne the notion in this sense.3.3 Constrained deformationIf we want to study 
ontinuous deformations ofa dimensioned �gure, not only have we to de�nethe 
ontinuous deformation of a �gure, but alsoof its 
onstraint system. So we introdu
e thede�nition of 
ontinuous deformation of a 
on-straint system S as the 
ontinuous deformationpreserving the number of solutions of S and ofevery well-
onstrained sub-system of S.Thus, we 
an link this notion with the 
ontinu-ous geometri
 deformation of a �gure. If there isa 
ontinuous deformation  between two di�er-ent instan
es Su and Sv of a 
onstraint system,and a 
ontinuous deformation ' between two �g-ures e and f that are respe
tively solutions ofSu and Sv, and if 8t 2 [0; 1℄, '(t) is a solutionof S (t), then we say that there is a geometri
homotopy between e and f with respe
t to the
onstraint system S, in short a S-homotopy.Note that, the deformation of the 
onstraintsystem must not rea
h any degenerate 
ase, be-
ause if that o

urs we 
an swap to another so-lution instead of always following the same one.This leads us to give a numbering for multifun
-tions values, 
ompatible with the 
ontinuous de-formation of the 
onstraint system, whi
h we de-�ne as 
ontinuous numbering.Now that we exposed our vision of likeness andnumbering, we will be able to make the link be-tween these notions, by saying that two �gures eand f are S-homotopi
 if and only if they havethe same number in their solutions tree. In addi-tion, given a sket
h e, there is at most a uniquef su
h that e and f are S-homotopi
.



3.4 Pra
ti
al numberingWe also noti
e that some geometri
 properties
hara
terize the dis
rimination between the val-ues of a multifun
tion. Then, for every multi-fun
tion we 
urrently use in our solver, we de-s
ribed su
h a geometri
 
hara
teristi
. For ex-ample, the results of mk
ir4, that yields a 
ir
le
2 tangent to a given 
ir
le 
1, are di�erentiatedby the pla
ement of 
2 with respe
t to 
1, insideor outside. The degenerate 
ase is rea
hed when
1 has a radius equal to zero.These geometri
 properties are preservedthrough a 
ontinuous deformation, so they allowus to de�ne a 
ontinuous numbering.4 Freezing of a bran
hWe put forward the hypothesis that all the ex-pe
tations of the designer are in his 
onstrainedsket
h.We �rst point out the fa
t that the sket
h 
anbe seen as a parti
ular solution of the 
onstraintsystem instantiated by the values read on thesket
h. So, it 
orresponds to a parti
ular bran
hof the tree of solutions, that we 
all the sket
hbran
h. Then, we suppose that the user gavea sket
h and some 
onstraints that look like hisexpe
tations, that is, in the sense we de�ned ear-lier, there is a 
ontinuous deformation betweenthe sket
h and the solution. Thus, if we 
an�nd a solution having the same number than thesket
h, then we advan
e the idea that it is theintended solution.The operation 
onsisting in storing the num-ber of the sket
h bran
h is 
alled freezing of abran
h. We this number is known, we 
an laun
han interpretation with the given dimensions,guided by the number of the frozen bran
h.One of the advantages of this method is itsspeed. Indeed, instead of potentially 
omparingsome geometri
 properties of all the obje
ts ofthe �gure with ea
h other, we only 
ompare, atea
h jun
tion of the tree, the obje
ts that arebrought into play in the 
on
erned multifun
-tion. Sin
e the treatment is made as the inter-pretation goes along, this method redu
es signif-i
antly the pro
essing time in 
omparison with

a systemati
 method. An example of a resultprovided by this method 
an be seen on Fig.5.It shows the single solution found by using thefreezing of a bran
h on the 
onstrained sket
hgiven on Fig.1.
Figure 5: The required solution of the sket
hgiven on Fig.1Let us note here that, as geometri
 
riteria onmultifun
tions are dependent on lines orienta-tion. This orientation of all obje
ts is 
omputedfrom the sket
h and the user's 
onstraints.5 Dis
ussionThe method we exposed in previous se
tionworks �ne when all 
onstraints are metri
. Butanother type of 
onstraints is also used in YAMS:boolean 
onstraints. As examples, we 
an 
itetangen
y, or equality of obje
ts. In the 
ase ofboolean 
onstraints, some information is miss-ing to �nd the intended solution. A
tually, un-like metri
 
onstraints that don't a�e
t topology,these 
onstraints are not always respe
ted on thesket
h, as shown on Fig.6 and 7: on the sket
h,the 
ir
le is a
tually not tangent to the line 
on-trary to the 
onstraints given by the user.
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Figure 6: Tangen
y problem : the sket
hIn these situations, two general approa
hes
an be 
onsidered, those 
orre
ting the sket
hto �t the previous 
onditions, and those produ
-ing several bran
hes giving a small subtree to
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C1Figure 7: Two possibilities for tangen
yexplore. The �rst one has not yet been stud-ied, but it may 
onsist in interpreting the 
on-stru
tion plan with the data read on the sket
hby 
orre
ting the in
onsistent obje
ts as they goalong. For example, on Fig.6, the sket
h 
ouldbe modi�ed in su
h a way that the 
ir
le be-
omes tangent to the line. Among the two pos-sible 
ir
les given by the 
onstru
tion plan, we
hoose the one that is 
losest to the 
ir
le on thesket
h, in the sense of Eu
lidean distan
e overthe 
oordinates.The se
ond approa
h 
onsists in making amaximum freezing, that means keeping all thepossible solutions if it is not possible to de
ide.The result is a frozen subtree that 
an be ex-plored thanks to some tools provided by the soft-ware. Among these tools, we 
an 
ite 
lassi
algeometri
 heuristi
s to prune and/or 
lassify thebran
hes of the remaining subtree, algorithmi
tools to make faster the 
omplete or a partial ex-ploration of the solution spa
e (hash table, intel-ligent ba
ktra
king, redu
tion of the 
omplexityof the tree, et
.), and an user friendly interfa
e.A �rst tool of this user friendly interfa
e is in-spired by debug tools provided by most of the de-velopment systems in software engineering. Thisis possible be
ause our approa
h is formal andwe have a 
onstru
tion plan. So it is easy to doa step by step evaluation, allowing the user to
hoose, at ea
h fork, a value among the avail-able results. This simple me
hanism 
an be en-han
ed with several kinds of breakpoint tools,like in Prolog. Moreover, it is possible to o�erthe opportunity to freeze a part of a solutiontree between two breakpoints, and then to skipthis part that has be
ome a big step.We also intend to implement a se
ond 
lass oftools, that is based on the idea of a magneti


grid. It allows a more intuitive approa
h of thesele
tion problem. On the basis of a solutionthat doesn't �t the user's expe
tations, he 
andrag the mispla
ed element of the �gure untilone of the positions allowed by the tree of solu-tions.6 ResultsIn order to illustrate our method, we exposehere a quite representative example. The sket
hon Fig.8, showing a lever, 
omes with 106
onstraints in
luding 2 tangen
y 
onstraints,tg
l(
1; l1) and tg
l(
3; l2). Note that to lightenthe �gure, we avoided to represent the 
on-straints by arrows.
l2

c3
c2

c1

l1

Figure 8: Sket
h of the lever

Figure 9: Solutions for the leverUsing these 
onstraints, the solver produ
esa 
onstru
tion plan, 
ontaining 252 de�nitions.As among these de�nitions, 29 have an arity of2, the tree of possibilities of this 
onstraint sys-tem has 229 = 536870912 bran
hes. A
tually,some bran
hes lead to an interpretation failure,and others 
an be eliminated with a simple 
on-straints veri�
ation, so the tree of solutions pro-



vided by the interpretation stage only has 160bran
hes.Our method allows to prune signi�
antly thetree of solutions, providing a four-bran
hed sub-tree. The remaining solutions 
an be seen onFig.9. Among the four �gures, the part that re-mains un
hanged 
orresponds to the metri
 
on-straints, and the un
ertain part 
orresponds tothe two tangen
y 
onstraints. It is not possi-ble to have only one solution sin
e the tangen
y
onstraints are not respe
ted on the sket
h. Toprune the subtree, we have implemented 
lassi
heuristi
s su
h as relative pla
ing of 
ir
les andlines. With these heuristi
s, we found the in-tended solution, that is the bottom-left part ofFig.9.7 Con
lusionIn this paper, we exposed our formal approa
hof geometri
 
onstru
tions, that yields a 
on-stru
tion plan from a dimensioned sket
h. Then,we de�ned a notion of likeness 
oming from thetopologi
al homotopy notion 
alled S-homotopy.This allows us to de�ne in some way what is thestru
turing of the solution spa
e of a 
onstraintsystem. We also proposed a method to sele
t onesolution amongst many, by freezing a bran
h ofthe tree of solutions with the help of the sket
h.This method works �ne while all 
onstraintsare metri
, as we shown on some simple exam-ples. However, as the limits of our method were
learly identi�ed, we studied some tools to ex-plore the solution tree, and to help the user to�nd the intended solution.In previous papers [4, 5℄, we exposed that asymboli
 solving has many advantages. Here weshowed that it is also useful for solutions sele
-tion or exploration. Various debugging tools willsoon be implemented, and we plan to develop anintuitive graphi
 interfa
e to deal with them.Further work is needed to analyze more in de-tail the stru
turing of solutions spa
e. For ex-ample, in the 
ase of arti
ulated systems anima-tion, one of the problems is the 
rossing of deadpoints. This problem is linked with some de-generate 
ases, and with the transition from one
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h to another in the tree of solutions.Referen
es[1℄ B. Aldefeld. Variations of geometriesbased on a geometri
-reasoning method.Computer-Aided Design, 20(3):117-126,1988.[2℄ W. Bouma, I. Fudos, C. Ho�mann, J.Cai, and R. Paige. Geometri
 
onstraintsolver. Computer-Aided Design, 27(6):487-501, 1995.[3℄ B. Br�uderlin. Constru
ting three-dimensional geometri
 obje
ts de�nedby 
onstraints. Pro
eedings of the ACMSiggraph Workshop in Intera
tive 3DGraphi
s, p.111-129, 1986.[4℄ J.-F. Dufourd, P. Mathis, and P. S
hre
k.Geometri
 
onstru
tion by assemblingsolved sub�gures. Journal of Arti�
ial In-telligen
e, 99(1):73-119, 1998.[5℄ C. Essert, P. S
hre
k, and J.-F. Dufourd.Interpr�etation d'un programme ave
 mul-tifon
tions g�eom�etriques. Pro
eedings of6�emes journ�ees de l'AFIG, Dunkerque,Fran
e, p.223-232, 1998.[6℄ H. Lamure and D. Mi
helu

i. Solving
onstraints by homotopy. Pro
eedings ofthe ACM-Siggraph Solid Modelling Con-feren
e, p.134-145, 1995, ACM Press.[7℄ P. Mathis. Un syst�eme de r�esolutionde 
ontraintes par assemblage enmod�elisation g�eom�etrique, Ph.D. Thesis,Universit�e de Strasbourg, 1997.[8℄ J. Owen. Algebrai
 solution for geometryfrom dimensional 
onstraints. Pro
eedingsof the 1st ACM Symposium of Solid Mod-elling and CAD/CAM Appli
ations, p.397-407, 1991, ACM Press.[9℄ G. Sunde. Spe
i�
ation of shape by dimen-sions and other geometri
 
onstraints. Pro-
eedings of the Eurographi
s Workshop onIntelligent CAD systems, Noordwisjker-out, 1987.


