
Seleting a �gure using S-homotopy in a CAD systemC. Essert-Villard, P. Shrek, J.-F. DufourdLSIIT, UPRES-A CNRS 7005Universit�e Louis Pasteur de Strasbourg, Franeessert,shrek,jfd�dpt-info.u-strasbg.frAbstrat: In CAD systems, formal geometri solvers allow to san the entire spae of the solutionsfound for a onstrained sketh drawn by the designer. We introdue a sketh-based method thatenables to easily eliminate most of the solutions and to keep the only, or at the worst the fewsolutions that have the best likeness with the original drawing.Keywords: formal geometri onstrutions; onstraint solving; tree pruning; omputer-aided design1 IntrodutionIn Computer-Aided Design (CAD), drawing on-strained �gures and automatially solving themare subjets that have been studied by manyauthors, but that still remain topial. In geo-metri modeling, onstraints bring a preise de-sription of geometri properties that must berespeted by the objet. Two main lasses ofsolving onstraints an be distinguished: numer-ial approahes and formal methods. The �rstones are often hosen, and onsist in solving nu-merially the equation system related to the di-mensions [2, 6, 8, 9℄. A formal resolution ofthe symboli onstraint system o�ers the advan-tage of eÆiently manipulating the de�ned �g-ure by varying parameters values [1, 3℄. Unfor-tunately, algebrai tools for formal alulus aremuh too general to be eÆient for that purpose.We gave priority to a both formal and geometriapproah, that was materialized by a softwarealled YAMS [4, 7℄.Whatever the approah, a onstraint systemdoesn't usually de�ne a single �gure. Indeed, theexistene of polynomial equations whose degreeis higher or equal to 2, on an algebrai point ofview, or of multiple intersetions, on a geometripoint of view, quikly leads to a ombinatorialexplosion of the number of solutions. In mostases, CAD users only want one solution �gurewhen they design an objet. That's why an im-

portant matter of geometri solvers is identify-ing the solution that is most onsistent with theuser's expetations, as we an see in [2℄ and [6℄.The most ommon response to this problem isthe use of heuristis to �lter the results. Whenusing a numerial method, the onstrained �g-ure is ompared with eah of the numerial so-lutions. This is generally haraterized by slowruntimes, and there is often more than one so-lution left. Our formal approah allows us totake advantage of the onstrution program toompare the sketh with a solution.The rest of the paper is organized as follows.Setion 2 outlines our formal approah of on-straints solving, and the relating notions. Se-tion 3 exposes our vision of likeness between �g-ures, and a struturing of the solutions spae.Setion 4 presents a method to hoose the in-tended �gure amongst many solutions. Setion5 deals with restritions that apply to it, and theway to solve partiular ases. Setion 6 showssome results provided by our tehnique, and Se-tion 7 onludes.2 Geometri onstraints systemsolvingWe now present the solver part of YAMS, whihats in two stages, a symboli one and an inter-pretative one.



2.1 Symboli resolutionIn the �rst stage, given a dimensioned sketh,the solver assoiates the geometri objets withsome identi�ers, then turns the onstraints intoformal parameters to form the geometri on-straint system S = (X;A;C), where X isa set of unknowns, A a set of parameters,and C a set of onstraints of the form C =fp1(X;A); : : : ; pm(X;A)g where eah pi(X;A) isa prediative term, namely a onstraint, whosevariables are in X or in A.Then, aording to the onstraints, YAMSprodues de�nitions that ensure orrespondenebetween funtional terms and identi�ers. Thede�nitions are brought together forming a gen-eral onstrution plan, that is the result of theformal phase. This plan indiates how and inwhat order the geometri objets must be builtto produe the �gure. More formally, a plan T isa result of a symboli resolution of a onstraintsystem S if T is a triangular solved system, andS � T , that is S and T have the same solutions.Using instantiation of parameter symbols in Awith values of any tuple u, we obtain Su � Tu.2.2 Interpretative stageIn the seond stage, the original dimensions areused as parameters for the numerial interpreta-tion of the onstrution plan. Sine used fun-tional terms may provide multiple results, eahfuntional symbol is assoiated with a numerialmultifuntion. For example, the intersetion be-tween a line and a irle, symbolized by interl,may produe two points.One values are assigned to the parameters,we an onsider the interpretation as the build-ing of a tree labeled with numerial values. Eahinterpreted de�nition produes a branhing. Atthe end, the tree alled solutions tree representsthe solution spae, and one solution orrespondsto the labels of one branh. Even if, obviously,this tree is not really built in pratise but ex-plored by baktraking [5℄, it may inrease fastand be very wide. Thus, it is useful to preiselynumber the solution.Atually, the omputed onstrution plan en-

ables to onstrut all the solutions as well asother �gures whih are \false solutions". Thefalse solutions an quikly be eliminated thanksto a simple test, as they are not onsistent withthe onstraints. But that may be insuÆient.On the example presented on Fig.1, there are32768 di�erent solutions for a geometri objetmade of 15 equilateral triangles �gure (eah seg-ment orresponds to an equally onstrained dis-tane), but the solution spae an't be reduedbeause all of the �gures are onsistent with theonstraints. Some of them are presented on Fig.2(some triangles may be superimposed). Otherheuristis are neessary to drastially prune thetree of solutions, eliminating the �gures thatdoesn't look like the sketh.
Figure 1: 15 triangles on�guration : the sketh

Figure 2: Four solutions among 32768 to "15triangles"
3 Using the sketh's data toprune the tree of solutionsOur purpose is to obtain a single solution �gurethat bears the best resemblane to the originaldrawing. First, let us de�ne what we mean bysaying a �gure looks like another.



3.1 Usual riteria of likenessTwo �gures are often said to look like eah otherif they have some geometri properties in om-mon, suh as relative plaing of points, lines andirles, angles auteness, and onvexity of someparts of the sketh. We only notie that mostof these properties omparisons an be held inhek by some simple examples : on Fig.3 b),all angles are aute and all points have the samerelative plaing so we an't deide ; on Fig.4, thesketh has a onvexity ow with respet to thesolution.
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a) sketch b) solutionFigure 4: Convexity aw3.2 Homotopy as a notion of likenessWhen onsidering only topologial properties,the ontinuous deformation between two para-metri urves alled homotopy is an usual like-ness onept. Of ourse, this de�nition is muhtoo general for us beause it doesn't take intoonsideration elementary geometry properties ofthe objets, partiularly their type. For exam-ple, a irle is homotopi to a triangle, and this is

meaningless for CAD users. So, we have to re�nethis haraterization in a geometri framework.With the help of a oordinates system, we ande�ne a metri topology, from whih a notion ofproximity follows. Now we an give our de�ni-tion of geometri homotopy, that is a ontinuoustransformation that preserves inidene relation-ships and geometri types (suh as points, lines,et.).However, geometri homotopy does not takeinto aount the onstraint systems. We have tore�ne the notion in this sense.3.3 Constrained deformationIf we want to study ontinuous deformations ofa dimensioned �gure, not only have we to de�nethe ontinuous deformation of a �gure, but alsoof its onstraint system. So we introdue thede�nition of ontinuous deformation of a on-straint system S as the ontinuous deformationpreserving the number of solutions of S and ofevery well-onstrained sub-system of S.Thus, we an link this notion with the ontinu-ous geometri deformation of a �gure. If there isa ontinuous deformation  between two di�er-ent instanes Su and Sv of a onstraint system,and a ontinuous deformation ' between two �g-ures e and f that are respetively solutions ofSu and Sv, and if 8t 2 [0; 1℄, '(t) is a solutionof S (t), then we say that there is a geometrihomotopy between e and f with respet to theonstraint system S, in short a S-homotopy.Note that, the deformation of the onstraintsystem must not reah any degenerate ase, be-ause if that ours we an swap to another so-lution instead of always following the same one.This leads us to give a numbering for multifun-tions values, ompatible with the ontinuous de-formation of the onstraint system, whih we de-�ne as ontinuous numbering.Now that we exposed our vision of likeness andnumbering, we will be able to make the link be-tween these notions, by saying that two �gures eand f are S-homotopi if and only if they havethe same number in their solutions tree. In addi-tion, given a sketh e, there is at most a uniquef suh that e and f are S-homotopi.



3.4 Pratial numberingWe also notie that some geometri propertiesharaterize the disrimination between the val-ues of a multifuntion. Then, for every multi-funtion we urrently use in our solver, we de-sribed suh a geometri harateristi. For ex-ample, the results of mkir4, that yields a irle2 tangent to a given irle 1, are di�erentiatedby the plaement of 2 with respet to 1, insideor outside. The degenerate ase is reahed when1 has a radius equal to zero.These geometri properties are preservedthrough a ontinuous deformation, so they allowus to de�ne a ontinuous numbering.4 Freezing of a branhWe put forward the hypothesis that all the ex-petations of the designer are in his onstrainedsketh.We �rst point out the fat that the sketh anbe seen as a partiular solution of the onstraintsystem instantiated by the values read on thesketh. So, it orresponds to a partiular branhof the tree of solutions, that we all the skethbranh. Then, we suppose that the user gavea sketh and some onstraints that look like hisexpetations, that is, in the sense we de�ned ear-lier, there is a ontinuous deformation betweenthe sketh and the solution. Thus, if we an�nd a solution having the same number than thesketh, then we advane the idea that it is theintended solution.The operation onsisting in storing the num-ber of the sketh branh is alled freezing of abranh. We this number is known, we an launhan interpretation with the given dimensions,guided by the number of the frozen branh.One of the advantages of this method is itsspeed. Indeed, instead of potentially omparingsome geometri properties of all the objets ofthe �gure with eah other, we only ompare, ateah juntion of the tree, the objets that arebrought into play in the onerned multifun-tion. Sine the treatment is made as the inter-pretation goes along, this method redues signif-iantly the proessing time in omparison with

a systemati method. An example of a resultprovided by this method an be seen on Fig.5.It shows the single solution found by using thefreezing of a branh on the onstrained skethgiven on Fig.1.
Figure 5: The required solution of the skethgiven on Fig.1Let us note here that, as geometri riteria onmultifuntions are dependent on lines orienta-tion. This orientation of all objets is omputedfrom the sketh and the user's onstraints.5 DisussionThe method we exposed in previous setionworks �ne when all onstraints are metri. Butanother type of onstraints is also used in YAMS:boolean onstraints. As examples, we an itetangeny, or equality of objets. In the ase ofboolean onstraints, some information is miss-ing to �nd the intended solution. Atually, un-like metri onstraints that don't a�et topology,these onstraints are not always respeted on thesketh, as shown on Fig.6 and 7: on the sketh,the irle is atually not tangent to the line on-trary to the onstraints given by the user.
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Figure 6: Tangeny problem : the skethIn these situations, two general approahesan be onsidered, those orreting the skethto �t the previous onditions, and those produ-ing several branhes giving a small subtree to
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C1Figure 7: Two possibilities for tangenyexplore. The �rst one has not yet been stud-ied, but it may onsist in interpreting the on-strution plan with the data read on the skethby orreting the inonsistent objets as they goalong. For example, on Fig.6, the sketh ouldbe modi�ed in suh a way that the irle be-omes tangent to the line. Among the two pos-sible irles given by the onstrution plan, wehoose the one that is losest to the irle on thesketh, in the sense of Eulidean distane overthe oordinates.The seond approah onsists in making amaximum freezing, that means keeping all thepossible solutions if it is not possible to deide.The result is a frozen subtree that an be ex-plored thanks to some tools provided by the soft-ware. Among these tools, we an ite lassialgeometri heuristis to prune and/or lassify thebranhes of the remaining subtree, algorithmitools to make faster the omplete or a partial ex-ploration of the solution spae (hash table, intel-ligent baktraking, redution of the omplexityof the tree, et.), and an user friendly interfae.A �rst tool of this user friendly interfae is in-spired by debug tools provided by most of the de-velopment systems in software engineering. Thisis possible beause our approah is formal andwe have a onstrution plan. So it is easy to doa step by step evaluation, allowing the user tohoose, at eah fork, a value among the avail-able results. This simple mehanism an be en-haned with several kinds of breakpoint tools,like in Prolog. Moreover, it is possible to o�erthe opportunity to freeze a part of a solutiontree between two breakpoints, and then to skipthis part that has beome a big step.We also intend to implement a seond lass oftools, that is based on the idea of a magneti

grid. It allows a more intuitive approah of theseletion problem. On the basis of a solutionthat doesn't �t the user's expetations, he andrag the misplaed element of the �gure untilone of the positions allowed by the tree of solu-tions.6 ResultsIn order to illustrate our method, we exposehere a quite representative example. The skethon Fig.8, showing a lever, omes with 106onstraints inluding 2 tangeny onstraints,tgl(1; l1) and tgl(3; l2). Note that to lightenthe �gure, we avoided to represent the on-straints by arrows.
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Figure 8: Sketh of the lever

Figure 9: Solutions for the leverUsing these onstraints, the solver produesa onstrution plan, ontaining 252 de�nitions.As among these de�nitions, 29 have an arity of2, the tree of possibilities of this onstraint sys-tem has 229 = 536870912 branhes. Atually,some branhes lead to an interpretation failure,and others an be eliminated with a simple on-straints veri�ation, so the tree of solutions pro-



vided by the interpretation stage only has 160branhes.Our method allows to prune signi�antly thetree of solutions, providing a four-branhed sub-tree. The remaining solutions an be seen onFig.9. Among the four �gures, the part that re-mains unhanged orresponds to the metri on-straints, and the unertain part orresponds tothe two tangeny onstraints. It is not possi-ble to have only one solution sine the tangenyonstraints are not respeted on the sketh. Toprune the subtree, we have implemented lassiheuristis suh as relative plaing of irles andlines. With these heuristis, we found the in-tended solution, that is the bottom-left part ofFig.9.7 ConlusionIn this paper, we exposed our formal approahof geometri onstrutions, that yields a on-strution plan from a dimensioned sketh. Then,we de�ned a notion of likeness oming from thetopologial homotopy notion alled S-homotopy.This allows us to de�ne in some way what is thestruturing of the solution spae of a onstraintsystem. We also proposed a method to selet onesolution amongst many, by freezing a branh ofthe tree of solutions with the help of the sketh.This method works �ne while all onstraintsare metri, as we shown on some simple exam-ples. However, as the limits of our method werelearly identi�ed, we studied some tools to ex-plore the solution tree, and to help the user to�nd the intended solution.In previous papers [4, 5℄, we exposed that asymboli solving has many advantages. Here weshowed that it is also useful for solutions sele-tion or exploration. Various debugging tools willsoon be implemented, and we plan to develop anintuitive graphi interfae to deal with them.Further work is needed to analyze more in de-tail the struturing of solutions spae. For ex-ample, in the ase of artiulated systems anima-tion, one of the problems is the rossing of deadpoints. This problem is linked with some de-generate ases, and with the transition from one
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