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1 IntrodutionIn Computer-Aided Design (CAD), drawing onstrained �gures and automat-ially solving them are subjets that have been studied by many authors[1,3{5,15,17,20,22,25℄, but that still remain topial. In geometri modeling,onstraints bring a preise desription of geometri properties that must be1 This researh is supported by the PRC-GDR \Algorithms, Languages and Pro-gramming", MENRT-CNRS, FranePreprint submitted to Elsevier Preprint 8 September 2000



respeted by the objet. Sine I.E. Sutherland's Skethpad [24℄, various waysof solving onstraints have been onsidered. Two main lasses an be distin-guished: numerial approahes and formal methods. The �rst ones are oftenhosen, and onsist in solving numerially the equation system related to thedimensions [12,16,17℄. A formal resolution of the symboli onstraint systemo�ers the advantage of eÆiently manipulating the de�ned �gure by varyingparameters values [1,4,5,21℄. Unfortunately, algebrai tools for formal alu-lus, e.g. omputer algebra systems [11℄, are muh too general to be eÆientfor that purpose.Within our team, we gave priority to a both formal and geometri approah:resolution tools that we propose are based on lassi geometry, more par-tiularly geometri onstrutions domain, and on symboli reasoning, morepreisely rule-based systems. They are speialized enough to be eÆient tosolve most problems in CAD. Then, in a �rst stage, the result of the formalresolution of a onstraint system is a onstrution plan desribing, in the rightorder, the objets to build and the operations to apply so as to obtain a solu-tion �gure. A seond stage onsists in numerially interpreting this onstru-tion plan, by replaing the parameters with dimensions values. This approahwas materialized by a software alled YAMS 2 [8,9,18℄ that assoiates a formalgeometri solver with the 3D topology-based modeller Topo�l [2℄.Whatever the approah, numerial or formal, algebrai or geometri, a on-straint system doesn't usually de�ne a single �gure. When an in�nite numberof �gures satis�es the onstraints, the system is said under-onstrained. Whenthe set of solutions is �nite and non empty, the system is said well-onstrained.In the ase of a well-onstrained system, the exploration of the solutions spaeis not as easy as it seems. Indeed, the existene of polynomial equations whosedegree is higher or equal to 2, on an algebrai point of view, or of multipleintersetions, on a geometri point of view, quikly leads to a ombinatorialexplosion of the number of solutions. As regards our approah, this inreasein the number of solutions is the result of the existene of multifuntions inthe onstrution plan.As an example, Fig.1 shows a sketh made up of �fteen adjaent triangles.The lengths of all their sides are asked to be equal to a given dimension. Thiskind of on�guration was studied by Owen [20℄, and is known to have 2p�2distint solutions, where p is the number of points. In our ase, with 17 points,we obtain 32768 solutions (triangles are often superposed, beause their sidesare equal). Some of them are presented on Fig.2.In most ases, CAD users only want one solution �gure when they design anobjet. That's why an important matter of geometri solvers is identifying the2 YAMS: Yet Another Meta Solver 2



Fig. 1. 15 triangles on�guration: the sketh

Fig. 2. Five solutions among 32768 to "15 triangles"solution that is most onsistent with the user's expetations, as we an see in[3℄ and [17℄. The most ommon response to this problem is the use of heurististo �lter the results. When using a numerial method, the onstrained �gure isompared with eah of the numerial solutions. This is generally haraterizedby slow runtimes, and there is often more than one solution left. Our formalapproah allow us to take advantage of the onstrution program to omparethe sketh with a solution.Another onern of our team relates to software engineering, and deals withrigorous desription of the models [7℄, and of their development [2℄. That'swhy we used algebrai spei�ations formalism, and more partiularly OBJ3language, to desribe our geometri universe, and every notion we use. Notiethat every notion used was spei�ed using OBJ3 and submitted to a series oftests. Another spei�ation of analyti geometri universe thanks to algebraitehniques an be found in [14℄.The rest of the paper is organized as follows. Setion 2 outlines our formalapproah of onstraints solving, and the relating notions. Setion 3 exposesour vision of likeness between �gures, and a struturing of the solutions spae.Setion 4 presents a method to hoose the intended �gure amongst manysolutions. Setion 5 deals with restritions that apply to it, and the way tosolve partiular ases. Setion 6 shows some results provided by our tehnique,3



and Setion 7 onludes.2 Geometri onstraints system solvingOur original approah to formal geometri onstrution of rigid bodies in theEulidean plane was made a reality with the prototype alled YAMS. That isa formal 2D geometri solver assoiated with the 3D topology-based modellerTopo�l [2℄. A preise desription of this assoiation an be found in [18℄ and[9℄, so we'll only present here the solver part, whih ats in two stages, asymboli one and an interpretative one.2.1 Symboli resolutionIn the �rst stage, given a dimensioned sketh, the solver assoiates the geo-metri objets with some identi�ers, then turns the onstraints into formalparameters to form the geometri onstraint system as it is de�ned below.De�nition 1 (onstraint system) A geometri onstraint system is a tripleS = (U;X;C), where U a set of parameters, X is a set of unknowns, andC a set of onstraints of the form C = fp1(U;X); : : : ; pr(U;X)g, where eahpi(U;X) is a prediative term, namely a onstraint, whose variables are in Xor in U .
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Fig. 3. A sketh with onstraints (left hand side) and identi�ers assoiation (righthand side)Example 2 An example of dimensioned sketh is shown on the left hand sideof Fig.3. The �rst objet, made up of two line segments and an ar, is sub-jeted to topologial onstraints (inidene and adjaeny) dedued from thesketh, and metri onstraints given by the user. As shown on the diagram,there are onstraints on the two line segments lengths, on the oriented anglebetween these segments, and on the ar's radius. This ar is asked to have thesame enter as the irle that forms the seond part of the �gure. Finally, wewant the radius of this irle to be half the radius of the ar. The sketh as it is4



drawn does not respet the metri onstraints, but respets inidene and ad-jaeny onstraints. The right hand side of Fig.3 shows how YAMS assoiatesidenti�ers to geometri objets. By onvention, pi, i, li, ki, and ai are thehosen names for points, irles, lines, lengths and angles, respetively. Theorresponding onstraint system is presented on Table 1.Table 1Constraints orresponding to Fig.4 exampleegal p(p5, p4) angle(p1, p2, p1, p3, a1) on(p2, 1)entre(2, p5) distpp(p1, p2, k2) onl(p3,l2)entre(1, p4) distpp(p1, p3, k1) onl(p2, l1)radius(2, k4) �xorgpl(p1, l1, p2) onl(p1, l2)radius(1, k3) on(p3, 1) onl(p1, l1)When the user gives a dimensioned sketh, he atually provides YAMS somenumerial values, for example distpp(p1,p2,5), whih are abstrated in ight toprodue onstraints, suh as distpp(p1,p2,k2) and k2 = initl(5). More preisely,the user provides an instaniated system Su = (;; X; Cu), where u is the tupleof the dimensions values, and YAMS transforms it into a system S = (U;X;C),where eah symbol of U is the abstration of a dimension value, and C is theset of onstraints given by the user where eah dimension value is replaedby a symbol in U . It is possible to get bak to Su from S by instaniatingsymbols in U with values from u. An advantage of the formal approah is thathanging the values of u does not a�et the solving proess. In the same way,in the partiular ase where all the onstraints are metri onstraints, that isinvolving dimensions, if u is the tuple of the values read on the sketh, thenthe sketh is a solution of Su.Then, aording to the onstraints, YAMS produes de�nitions of the formy = g(u1; : : : ; us; x1; : : : ; xk) that ensure orrespondene between funtionalterms and identi�ers. The de�nitions are brought together forming a generalonstrution plan, whih is the result of the formal phase. This plan indiateshow and in what order the geometri objets must be built to produe the�gure. More formally, a plan T is the result of a symboli resolution of on-straint system S if T is a triangular system, that is omposed of de�nitions ofthe form xi = g(u1; : : : ; us; x1; : : : ; xi�1) where 1 � i � r, r being the numberof variables in T , and S � T , that is S and T have the same solutions. Wealso say that T is a solved system. Using instaniation of parameter symbolsin U with values of any tuple u, we obtain Su � Tu.Example 3 A onstrution plan orresponding to the onstrained sketh ofExample 2, that is where the parameters values were given by the user, islisted in Fig.4, on the left. In order to make this example learer, we sum upsome funtional symbols and their pro�les on Table 2.5



Table 2Some funtional symbols and their pro�lessymbol pro�le ommentinterl line� irle! point intersetion irle-linemkir point� long ! irle irle with known enter andradiuslpla point� line� angle! line line through one point making agiven angle with a known linemedradir point� point� long ! irle irle passing through two points,with a known radiusinter irle� irle! point intersetion irle-irleIn addition, YAMS ontains some original features that makes resolutionseasier. The solver is able to break the initial geometri onstraint systeminto smaller ones. This deomposition is a bottom-up proess: the subsys-tems are disovered during the solving proess. The philosophy is to solvesub�gures independently and then to glue them together with a mehanismalled assembling. Deomposition of the geometri onstraint system is basedupon the stability under displaements of dimensioned systems. YAMS usesa ollaboration of several loal methods, suh as knowledge-based systemsand Newton-Raphson method, oordinated by a multi-agent arhiteture witha blakboard. Geometri methods are ful�lled by expert agents whih areprodution-based systems. A step by step proess ompletes the blakboardwith new piees of knowledge until the problem is solved or no new dedutionan be produed. An important hypothesis to ensure suess is that the geo-metri onstraint system to solve has to be well-onstrained (see Setion 1),that is it has a �nite non-void set of solutions [9℄. Atually, in this work, wedon't deal with systems that are not well-onstrained.2.2 Interpretative stageIn the seond stage, the required dimensions are used as parameters for thenumerial interpretation of the onstrution plan. Sine used funtional termsmay provide multiple results, eah funtional symbol is assoiated with a nu-merial multifuntion. For example, the intersetion between a line and a ir-le, symbolized by interl, generally produes two points, and medradir thatbuilds a irle through two known points, with a known radius, generally pro-dues two di�erent irles (see Table 2). It is often useful to give a numberingto the various values produed.De�nition 4 (numbering) Let g be a multifuntion with n arguments and amaximum of k results. A numbering of g is a funtion G with n+1 arguments6



suh that g(x1; : : : ; xn) = fG(x1; : : : ; xn; 1); : : : ; G(x1; : : : ; xn; k)gwhere G(x1; : : : ; xn; i) and G(x1; : : : ; xn; j) are distint funtions of x1; : : : ; xnif i 6= j.The existene of multifuntions in a onstrution plan introdues hoies inthe interpretation proess. One values are assigned to the parameters, we anonsider the interpretation as the building of a tree labeled with numerial val-ues. The interpretation of a de�nition of the form y = g(u1; : : : ; us; x1; : : : ; xr)produes a branhing of degree k if multifuntion g has a maximum of kresults. At the end, the tree represents the solution spae, and one solutionorresponds to the labels of one branh. Note that during the evaluation, itmay happen that a multifuntion does not provide any result. In suh a ase,the interpretation stops in this branh. It may also happen that the numberof the really produed results is less than the maximum. So we an distinguishthe tree of potential solutions, alled tree of possibilities, and the tree of e�e-tive solutions, alled tree of solutions. Note that even if the tree of solutionsis smaller than the tree of possibilities, it may inrease fast and be very wide.Obviously, this tree is not really built, but explored by baktraking [18℄.
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numbering (#) :Fig. 4. Constrution plan orresponding to Fig.3 and tree of solutionsExample 5 A tree of solutions produed for our example after a parametersassignment is presented on Fig.4, at the right of the onstrution plan. Theeight solutions (or branhes) are shown on Fig.5, and numbered from #1 to#8. Eah node orresponds to a result for an identi�er, whih is written withthe result number in brakets.Thus, we have the following de�nition to preisely distinguish the solutions.7



De�nition 6 (ourrene of a solution) Let Tu be an instane of a onstru-tion plan that de�nes the unknowns x1; x2; : : : ; xn thanks to the multifuntionsg1; g2; : : : ; gn numbered by G1; G2; : : : ; Gn, with the maxima k1; k2; : : : ; kn, re-spetively. A partiular solution of Tu is �G1(u; i1); G2(u; i2); : : : ; Gn(u; in)�,where 1 � i1 � k1; : : : ; 1 � in � kn. We say that (i1; i2; : : : ; in) is the our-rene of this solution.
1) 2) 3) 4)

5) 6) 7) 8)Fig. 5. The generated solutionsIt is the usual notion of ourrene for tree nodes. For instane, one an read onFig.4 that solution #6 has (1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 1; 1; 2; 1; 1) as an ourrene.Atually, the omputed onstrution plan enables to onstrut all the solutionsas well as other �gures whih are \false solutions". The false solutions anquikly be eliminated thanks to a simple test, as they are not onsistent withthe onstraints.Example 7 In our example, 4 solutions (numbered 3, 4, 5 and 6) an beeliminated beause the sign of angle a1 is the opposite of what is given in theonstraints. Moreover, among the remaining solutions, we an eliminate #7and #8 that are idential to #1 and #2 modulo a displaement, in the sameway as in YAMS.But that may be insuÆient. In the example presented on Fig.1, there are32768 di�erent solutions for a geometri objet made of 15 equilateral triangles�gure, but the solution spae an't be redued beause all of the �gures areonsistent with the onstraints. Other heuristis are neessary to drastiallyprune the tree of solutions, eliminating the �gures that doesn't look like thesketh. 8



3 Tree of solutions pruning using sketh interpretationOur purpose is to obtain a single solution �gure that bears the best resem-blane to the original drawing. Before explaining the method we use to ahieveour aim, let us de�ne what we mean by saying a �gure looks like another.3.1 Usual riteria of likenessSimilarity is de�ned by most of the ditionaries as onformity in nature orappearane between things. Two �gures are often said to look like eah otherif they have some geometri properties in ommon, suh as relative plaing ofpoints, lines and irles, angles auteness, and onvexity of some parts of thesketh. Conversely, two �gures are not similar if one of the harateristis issatis�ed by one and not by the other. This intuitive de�nition was proposedin order to eliminate solutions that seemed not \interesting" in the CADframework. We only notie that most of these properties omparisons an beheld in hek by some simple examples: on Fig.6 all angles are aute and allpoints have the same relative plaing so we an't deide whih solution isrequired; on Fig.7 and 8 the sketh has a aw (onvexity or auteness) withrespet to the solution.These intuitive riteria are not satisfatory. In the following setion, a betterriterion based on homotopy is proposed. Note that the veri�ation of geo-metri properties on a sketh given by the user, alled semanti veri�ation,has already been used in the framework of geometri theorem proving [13℄.3.2 Homotopy as a notion of likenessIn geometry, several notions of likeness between objets exist, depending onthe onsidered abstration degree. We try to de�ne a riterion taking exatly
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(a) sketch (angle in C is obtuse) (b) a solution (angle in C is acute)Fig. 8. Auteness awinto aount our framework, that is geometri �gures whih are solutions ofonstraint systems.When onsidering only topologial properties, the ontinuous deformationalled homotopy is an usual likeness onept. Let us reall homotopy de�-nition.De�nition 8 (homotopy) Let P be a topologial spae, f0 : [0; 1℄! P and f1 :[0; 1℄! P be two parametri ontinuous urves. f0 and f1 are said homotopiif there is a funtion ' : [0; 1℄� [0; 1℄! P suh that '(x; 0) = f0(x), '(x; 1) =f1(x), and ' is ontinuous.An interesting point of this de�nition is that it makes a bridge between aloal notion of proximity in the Eulidean spae and a global one. This aspetseems very interesting to us sine in CAD the sketh an be very far fromany solution (see Fig.6-8). Of ourse, this de�nition is muh too general forus beause it doesn't take into onsideration elementary geometry propertiesof the objets, partiularly their type. For example, a irle is homotopi toa triangle, and this is meaningless for CAD users. So, we have to re�ne thisharaterization in a geometri onstrution framework.Let us �rst make learer our notion of geometri type. In [9℄, we desribed a�gure as a geometri tuple of objets, suh as points, lines, irles, et. The10



type of suh a �gure is then a Cartesian produt of simple types, to whihwe have to add inidene relationships. For example, the triangle ABC ofFig.8 is typed point�point�point� segment� segment� segment with theappropriate inidene onstraints. With the help of a oordinates system, wean de�ne a metri topology, from whih a notion of proximity follows. Nowwe an give our de�nition of geometri homotopy.De�nition 9 (geometri homotopy) Given two �gures f0 and f1 of the sametype �1 � �2 � : : : � �n with the same inidene relationships, we say that f0and f1 are geometrially homotopi if there is a ontinuous transformation' : [0; 1℄ ! �1 � �2 � : : : � �n preserving inidene relationships, suh that'(0) = f0 and '(1) = f1.Transformation ' of this de�nition an be seen as a tuple of ontinuous trans-formations ('1; : : : ; 'n) for the types �1; : : : ; �n.Example 10 On Fig.9, the �gure omposed of a triangle p1p2p3 and his ir-umirle C is onsidered as having the type point�point�point�segment�segment� segment� irle. We deform the �gure by translating p3 into p03,that also deforms C into C 0. The ontinuous transformations applied on theomponents are: identity on p1 and p2, translation ���!p3p03 on p3, identity on[p1p3℄, similarities of enters p1 and p2 on [p1p3℄ and [p2p3℄ respetively, anda entral homothety whose enter is on the perpendiular bisetor of [p1p2℄ onC.
p1 p2

p3

C

C' p'3

Fig. 9. Geometri homotopyNote that the previous de�nition may haraterize the interative geometrideformations as in Cabri [23℄. However, we don't simply deal with �gures: wehave to keep in mind the onstraint system given by the user as muh as thegeometri �gures. So we an't only onsider a single solution, but its positionin the entire solution spae. 11



3.3 Constrained deformationIf we want to study ontinuous deformations of a dimensioned �gure, not onlyhave we to de�ne the ontinuous deformation of a �gure, but also of its on-straint system. Both have to be subjeted to a ontinuous deformation, froma partiular solution of the system instaniated by some values u to anotherpartiular solution of the system instaniated by some values v. Atually, thenotion of deformation of a system onerns the entire lass of equivalent sys-tems. Thus, we propose the following formalization.De�nition 11 (ontinuous deformation of a onstrained system) LetS = (U;X;C) be a geometri onstraint system instaniated into Su and Svwith two tuples of values u and v for U . A ontinuous deformation from Su toSv is a ontinuous funtion  : [0; 1℄! Rs suh that:(i)  (0) = u and  (1) = v(ii) for every system S 0 suh as S 0 � S, every well-onstrained subsystem�0 � S 0, and every t 2 [0; 1℄, �0 (t) has as many solutions as �0u.Reall (Setion 2) that S and S 0 are said to be equivalent, denoted S � S 0,if they have exatly the same solutions. Point (ii) of De�nition 11 is verystrong, beause it imposes that any subsystem �0 of the whole system S (oran equivalent system S 0) keeps the same number of solutions during the de-formation. Indeed, one the parameters are �xed, say to u, the solution spaean be viewed as the lass of all systems equivalent to Su. Thus, the abovede�nition an be regarded as the ontinuous deformation of a solution spae.The following lemma, diretly oming from the de�nition, will be useful.Lemma 12 Let S and S 0 be two equivalent systems with the same parametersset, and u and v two instaniations of these parameters. If there is a ontinuousdeformation from Su to Sv, then there is a ontinuous deformation from S 0uto S 0v.This notion is linked with the notion of ontinuous geometri deformation ofa �gure the following way.De�nition 13 (S-homotopy) Let Su and Sv be two di�erent instanes of aonstraint system S, fu a partiular solution of Su, and fv a partiular solutionof Sv. If the following onditions are satis�ed(i) there is a ontinuous deformation  from Su to Sv(ii) there is a ontinuous funtion ' : [0; 1℄ ! �1 � �2 � : : : � �n suh that'(0) = fu and '(1) = fv(iii) 8t 2 [0; 1℄, '(t) is a solution of S (t)then we say that there is a geometri homotopy from fu to fv with respet tothe onstraint system S, in short a S-homotopy.12



In other words, the deformation of the onstraint system must not reah anydegenerate ase beause, if that ours, we an jump to another solution in-stead of always following the same one, and that is not what we want.Example 14 On the top of Fig.10, the triangle ABC given as a sketh hasthree onstraints: length BC equals k1, distane between line l1 = (BC) andpoint A equals k2, and oriented angle in A equals a. The two possible solutions,f0 and f1, are presented bottom left and right on Fig.10. When B and C areknown, A an be built as the intersetion between line l2, that is at a distanek2 from l1, and the ar assoiated to a. It is possible to deform ontinuouslythe �rst solution by translating l2, but if we pass through the degenerate ase,as shown in the middle of Fig.10 (line tangeny), then we an reah the seondsolution. Thus, f0 and f1 are not S-homotopi. We will explain later why thesolution we would probably like to keep is f1.
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Fig. 10. Continuous deformation through a degenerate aseSine the symboli resolution of a system S onsists in building a triangu-lar solved system T (see [9℄) whih is equivalent to S, the degenerate asesof S are the degenerate ases of T , and onversely. Given that, in our ase,T is a set of de�nitions of the form xi = g(u1; : : : ; us; x1; : : : ; xi�1), where gis a multifuntion, suh a degenerate ase ours when g doesn't produe themaximum number of solutions, beause of partiular values of the parameters.For example, multifuntion interl (see Table 2) building the intersetion be-tween a line and a irle usually produes two solutions, but in the degeneratease where the irle is tangent to the line, there's only one solution (Fig.10).This leads us to give a numbering for multifuntions values whih is ompati-ble with the ontinuous deformation of the geometri onstraint systems, andwhih we de�ne as ontinuous numbering, this de�nition applying naturallyto a onstrution plan.
13



De�nition 15 (ontinuous numbering) Let g be a multifuntion and G anumbering suh thatg(x1; : : : ; xn) = fG(x1; : : : ; xn; 1); : : : ; G(x1; : : : ; xn; k)g:Then G is a ontinuous numbering if G is ontinuous on any domain on-taining no degenerate ase.In all the following, it will be supposed that all the onsidered multifuntionsare ontinuously numbered. Now that we de�ned learly our vision of like-ness and numbering, we are able to do the link between these notions, byexpounding the following theorem.Theorem 16 Let S be a onstraint system, and two instaniations u and vof the parameters suh that there exists a ontinuous deformation from Su toSv and a triangular system solving S. When T denotes this triangular system,two �gures fu and fv, respetively solutions of Su and Sv, are S-homotopi ifand only if they have the same ourrene (i1; : : : ; in) in Tu and Tv respetively.We do not prove this theorem here, let's simply say that the proof is mainlymade of ontinuity arguments. The above theorem is true whatever the sym-boli solution T of S, even if the ourrene is depending on T . More preisely,we have the following orollary.Corollary 17 Under the hypotheses of Theorem 16, two �gures fu and fv,respetively solutions of Su and Sv, are S-homotopi if and only if, for everytriangular system T symbolially solving S, they have the same ourrene inTu and Tv, respetively. In addition, fu being a �xed solution of Su, there is atmost a unique fv solution of Sv suh that fu and fv are S-homotopi.3.4 Pratial numberingIt is worth determining whih geometri properties haraterize the disrimi-nation between the values of a multifuntion. Following the example of interl,let us onsider the angle a between the given line and the line that passesthrough the enter of the irle and one intersetion in that order (see top leftof Fig.11). Notie that lines and angles are oriented. In the degenerate ase, ais a right angle. When interl produes two solutions, they are disriminatedby the auteness or not of a, that allows us to produe a ontinuous numberingfor interl. For instane, solution number 1 will be obtained when a is aute,and solution number 2 when a is obtuse. Then, for every multifuntion weurrently use in our solver, we desribed suh a geometri harateristi (seeFig.11 for illustrations): 14



� interl: builds the intersetion i between a line l1 and a irle . Let a bethe angle between l1 and the line l2 that onnets the enter p of  and i.There are at most two solutions for this multifuntion. For one solution ais aute, for the other one a is obtuse. There is a degenerate solution when is tangent to l1, and then a is a right angle.� inter: builds the intersetion i between two irles 1 and 2. The two solu-tions are di�erentiated by the relative plaing of three points (lokwise orounterlokwise): the enters p1 and p2 of the irles, and i. The degeneratesolution ours when 1 and 2 are tangent: p1, p2, and i are ollinear.� mkir4 : builds a irle 2 tangent to a given irle 1. One solution is loatedinside 1, the other one is outside 1. The degenerate ase is reahed when1 has a radius equal to zero.� medradir : builds a irle  through two points p1 and p2, knowing theradius k. Like inter, the relative plaing of three points (lokwise orounterlokwise) is di�erent for the two solutions. In this ase, the threepoints are p1, p2, and the enter p of . When k = p1p22 , p beomes themiddle of [p1p2℄, the three points are ollinear, and there is only one possiblesolution.� bisetdd : builds the bisetor l3 of two lines l1 and l2. The angle a betweenl1 and l3 is either aute or obtuse. When l1 and l3 are parallel, we have adegenerate ase.� linev : builds a vertial line l at a given distane k from a point p. The latteris either at the left or at the right of l. If k = 0, then there is only onepossibility for l, and it passes through p.� lineh: builds a horizontal line l at a given distane k from a point p. Thelatter is either above or below l. If k = 0, then there is only one possibilityfor l, and it passes through p.� ldl : builds a line l2 parallel to another line l1, at a given distane k from it.The angle a between l1 and ��!p1p2, where p1 2 l1 and p2 2 l2, is negative orpositive. If k = 0, then l1 = l2.In eah ase, moving from a solution to the other onsists in a ontinuous defor-mation passing throughout an intermediate �gure where the value assoiatedwith the harateristi property reahes an extremum. All of the geometriproperties de�ned above are preserved through a ontinuous deformation, sothey allow us to de�ne a ontinuous numbering.4 Freezing of a branhIn order to �nd the solution that the designer expets, we put forward thehypothesis that the onstraints he gave with the sketh reet his expetations.More preisely, using Theorem 16 notation, we assume �rst that there is aninstane u of the parameters suh that the sketh fu is a solution of Su, and15
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Fig. 11. Geometri harateristis of multifuntionsseondly that there is a ontinuous deformation from Su to Sv where v are thedimensions values initially given in the onstraints. In this setion we explainhow to ful�ll the former ondition in the ase of metri onstraints. The latteris a strong ondition, but it seems to be usually ahieved. For now, we will notonsider peuliar ases, that will be disussed in the next setion. That leadsus to a simple way of �nding the required solution, by applying Theorem 16the following way.We �rst point out the fat that, as we said in Setion 2, the sketh an beseen as a partiular solution of the onstraint system Su instaniated by thetuple u of the values read on the sketh. Then, we suppose that there is aontinuous deformation between Su and Sv, if Sv is the instaniation of thesystem by the tuple v of the given dimensions. Thus, if we an �nd a solutionof Sv having the same ourrene than the sketh, then we an say that it isthe intended solution. Even if it appears to be strange, we try to redisoverthe sketh by the mean of the onstrution plan.Pratially talking, we take advantage of our formal solving approah by op-erating the following way. In a �rst stage, we apply the interpretation Iu tothe triangular solved form Tu of the onstraint system Su with the sketh pa-rameters. At eah fork (multifuntion) of the tree of solutions produed by Iu,we an deide whih branh to follow by omparing, as explained in Setion3.4, the geometri properties of the results of the multifuntion with the dataread on the sketh. The aim is that the omputed version, that is the hosen16



branh, has to be nearly idential to the e�etive sketh. That way, we anstore the ourrene of this branh of the tree of solutions. This operation isalled freezing of a branh.In a seond stage, for some �xed parameters v, the �gure will be found byan interpretation Iv of the triangular solved form Tv of the onstraint systemSv, simply following the branh that was frozen during the previous step andwhose ourrene was stored. We an restart this interpretation with as manyother parameters as we want without doing the freezing again.An example of a result provided by this method an be seen on Fig.12. It showsthe single solution found by using the freezing of a branh on the onstrainedsketh given on Fig.1.
Fig. 12. The required solution of the sketh given on Fig.1One of the advantages of this method is its speed, beause no unneessaryomparisons are exeuted. Indeed, instead of geometrially omparing all theobjets of the �gure with eah other, we only ompare, at eah juntion of thetree, the objets that are brought into play in the onerned multifuntion.Sine the treatment is made as the interpretation goes along, this methodredues signi�antly the proessing time in omparison with a systematimethod.Example 18 In the example presented on Figs.1 and 12, it takes more than1 minute to alulate all possible solutions, whereas our method gives an in-stantaneous good answer.Finally, as we said previously, the geometri riteria on multifuntions aredependent on lines orientation. For example, with interl, if we hange theline's orientation, the auteness of the angle is inverted, and the solutionsswap. So, in order to ensure numbering preservation, we must hek that alllines in the sketh are given with the same orientation as the ones that will beomputed. We have to ompare the angle between eah line and the Ox axison the sketh with what it should be, as the sketh is onsidered as the resultof an interpretation.For example, let's onsider a line l1 desribed in the onstrution plan by ade�nition ontaining the funtion lpla that draws the line through one pointp, making an angle � with another line l2. We alulate, using the sketh'sdimensions, what should be the orientation of l1, knowing the previously al-17



ulated orientation of l2. Then, we ompare this theoretial orientation withthe e�etive one. If they are opposite, we hange the sketh's data by reversingthe line. On a formal point of view, the onstrution is unhanged. Only thenumerial representation of the sketh is orreted.5 DisussionThe method we exposed in previous setion works �ne when all onstraintsare metri. But another type of onstraints is also used in YAMS: Booleanonstraints. As examples, we an ite tangeny, or equality of objets. In thease of Boolean onstraints, some information is missing to �nd the intendedsolution. Atually, unlike metri onstraints that don't a�et topology, theseonstraints are not always respeted on the sketh, as shown on Fig.13 and14: on the sketh, the irle is atually not tangent to the line ontrary to theonstraints given by the user.
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Fig. 13. Tangeny problem: the sketh
A

B
A

B

C1

C1Fig. 14. Two possibilities for tangenyWe notie that this kind of problem an ome down to degenerate ases ques-tion. Indeed, tangeny an be seen as a distane between a irle and a linewhih would be void, that is a limit ase. In these situations, two generalapproahes an be onsidered, those orreting the sketh to �t the previousonditions, and those produing several branhes giving a small subtree toexplore.The �rst approah has not yet been studied, but it may onsist in interpretingthe onstrution plan with the data read on the sketh by orreting within18



itself the inonsistent objets as they go along. For example, on Fig.13, thesketh ould be modi�ed in suh a way that the irle beomes tangent tothe line. Among the two possible irles given by the onstrution plan, wehoose the one that is losest to the irle on the initial sketh, in the sense ofEulidean distane over the oordinates.The seond approah onsists in making a maximum freezing, that meanskeeping all the possible solutions if it is not possible to deide. The resultis a frozen subtree that an be explored thanks to some tools provided bythe software. These tools may be of di�erent kinds. Let us enumerate somepossibilities:� automati tools to prune and/or lassify the branhes of the remainingsubtree. Classial geometri heuristis an be used suh as omparisonsof ertain properties of the sketh and of the solutions. However, we takeadvantage of the onstrution plan to �nd out whih objets are linked, andto ompare their relative positions. This way, we think that these riteriaare more pertinent. In our example above, the two possibilities for irle 1an be sorted using the position (left or right) of the irle in the sketh.� algorithmi tools to make faster the omplete or the partial explorationof the solution spae. Amongst these tools, whih are well known in otherdomains, we have experimented a hash table, in the same way as funtionallanguages like OBJ3, an intelligent baktraking, and some permutations ofthe onstrution plan to redue the omplexity [10℄. We plan to use someheuristis oming from the SAT-problem [19,6℄.� user friendly interfae: we think that the user an have unertain ideas andhis/her wishes |expressed thanks to the sketh and the onstraints| anbe ontraditory. So, we propose a user interfae to explore the solutionspae using the onstrution plan. Let us detail these tools.A �rst lass of exploration tools is inspired by debug tools provided by most ofthe development systems in software engineering. This is possible beause ourapproah is formal and we have a onstrution plan. So it is easy to do a stepby step evaluation, allowing the user to hoose, at eah fork, a value amongthe available results. This simple mehanism an be enhaned with severalkinds of breakpoint tools. Moreover, it is possible to o�er the opportunity tofreeze a part of a tree of solutions between two breakpoints, and then to skipthis part that has beome a big step.We also intend to implement a seond lass of exploration tools, that is basedon the idea of a magneti grid. It allows a more intuitive approah of theseletion problem. On the basis of a solution that doesn't �t the user's ex-petations, he an drag the misplaed element of the �gure until one of thepositions allowed by the tree of solutions.19



6 Results
l1

c1

c2

c3

l2

Fig. 15. Sketh of the leverIn order to illustrate our method, we expose here a quite representative ex-ample. The sketh on Fig.15, showing a lever, omes with 106 onstraintsinluding 2 tangeny onstraints, tgl(1; l1) and tgl(3; l2) (see Table 3).Note that to lighten the �gure, we avoided to represent the onstraints byarrows, as we did in the previous examples.

Fig. 16. Solutions for the leverUsing these onstraints, that we annot explain in detail in suh a paper,the solver produes a onstrution plan, ontaining 252 de�nitions. As amongthese de�nitions, 29 have an arity of 2, the tree of possibilities of this onstraintsystem has 229 = 536870912 branhes. Atually, some branhes lead to aninterpretation failure, and others an be eliminated with a simple onstraintsveri�ation, so the tree of solutions provided by the interpretation stage onlyhas 160 branhes.Our method allows to prune signi�antly the tree of solutions, providing a four-branhed subtree. The remaining solutions an be seen on Fig.16. Among the20



Table 3Constraints of the leverangar(p28, p3, p25, a18) angar(p26, p24, p2, a17) entre(6, p31)entre(4, p29) entre(3, p28) entre(2, p27)radius(5, k31) radius(6, k30) radius(4, k29)entre(5, p30) entre(1, p26) radius(2, k28)radius(3, k27) radius(1, k26) angle(p13, p16, p13, p11, a16)angle(p17, p16, p17, p18, a14) angle(p15, p16, p15, p12, a13) angle(p18, p17, p18, p19, a12)angle(p10, p12, p10, p9, a10) angle(p19, p18, p19, p20, a9) angle(p20, p21, p20, p19, a8)angle(p21, p20, p21, p22, a6) angle(p8, p9, p8, p7, a5) angle(p22, p21, p22, p23, a4)angle(p16, p17, p16, p15, a15) angle(p12, p15, p12, p10, a11) angle(p9, p10, p9, p8, a7)angle(p17, p14, p4, p3, a2) angle(p17, p14, p1, p2, a1) angle(p5, p6, p22, p23,a3)distpp(p11, p13, k25) distpp(p13, p14, k24) distpp(p15, p16, k20)distpp(p13, p16, k23) distpp(p16, p17, k22) distpp(p18, p17, k21)distpp(p12, p15, k19) distpp(p19, p18, k18) distpp(p19, p20, k17)distpp(p12, p10, k16) distpp(p9, p8, k12) distpp(p5, p8, k8)distpp(p21, p20, k15) distpp(p9, p10, k14) distpp(p21, p22, k13)distpp(p23, p22, k11) distpp(p7, p8, k10) distpp(p5, p6, k9)distpp(p7, p5, k7) distpp(p1, p22, k6) distpp(p1, p23, k5)distpp(p14, p4, k3) distpp(p4, p3, k2) distpp(p1, p2, k1)distpp(p23, p4, k4) �xorgpl(p13, l10, p16) on(p7, 5)on(p1, 6) on(p6, 6) on(p5, 5)on(p4, 4) on(p23, 4) on(p3, 3)on(p25, 2) on(p24, 2) on(p24, 1)on(p25, 3) on(p2, 1) onl(p21, l16)onl(p23, l17) onl(p22, l17) onl(p22, l16)onl(p21, l15) onl(p20, l15) onl(p20, l14)onl(p19, l13) onl(p18, l13) onl(p18, l12)onl(p17, l10) onl(p16, l10) onl(p16, l11)onl(p15, l9) onl(p14, l10) onl(p13, l10)onl(p12, l9) onl(p12, l7) onl(p11, l8)onl(p10, l6) onl(p9, l6) onl(p9, l5)onl(p8, l4) onl(p7, l4) onl(p6, l3)onl(p4, l2) onl(p3, l2) onl(p2, l1)onl(p19, l14) onl(p17, l12) onl(p15, l11)onl(p13, l8) onl(p10, l7) onl(p8, l5)onl(p5, l3) onl(p1, l1) tgl(1, l1)tgl(3, l2)four �gures, the part that remains unhanged orresponds to the metri on-straints, and the unertain part orresponds to the two tangeny onstraints.It is not possible to have only one solution sine the tangeny onstraints arenot respeted on the sketh. To prune the subtree, we have implemented otherheuristis suh as relative plaing of irles and lines. With these heuristis,we found the intended solution, that is the bottom-left part of Fig.16.7 ConlusionIn this paper, we exposed our formal approah of geometri onstrutions,that yields a onstrution plan from a dimensioned sketh. Then, we de�neda notion of likeness oming from the topologial homotopy notion alled S-homotopy. This allows us to de�ne in some way what is the struturing of the21



solution spae of a onstraint system. We also proposed a method to seletone solution amongst many, by freezing a branh of the tree of solutions withthe help of the sketh.This method works �ne while all onstraints are metri, as we shown on somesimple examples. However, as the limits of our method were learly identi�ed,we studied some tools to explore the tree of solutions, and to help the user to�nd the intended solution.In previous papers [9℄, we exposed that a symboli solving has many advan-tages. Here we showed that it is also useful for solutions seletion or explo-ration. Various debugging tools will soon be implemented, and we plan todevelop an intuitive graphi interfae to deal with them.Further work is needed to analyze more in detail the struturing of solutionsspae. For example, in the ase of artiulated systems animation, one of theproblems is the rossing of dead points. This problem is linked with somedegenerate ases, and with the transition from one branh to another in thetree of solutions.Referenes[1℄ B. Aldefeld, H. Malberg, H. Rihter and K. Voss. Rule-based variationalgeometry in omputer-Aided Design. Arti�ial Intelligene in Design, D.T.Pham editor, Springer-Verlag, p. 27-46, 1991.[2℄ Y. Bertrand, J.F. Dufourd. Algebrai spei�ation of a 3D-modeller based onhypermaps. Computer Vision - GMIP, 56(1):29-60, 1994.[3℄ W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. Geometri onstraintsolver. Computer-Aided Design, 27(6):487-501, 1995.[4℄ B. Br�uderlin. Using Prolog for onstruting geometri objets de�ned byonstraints. Proeedings of EUROCAL'85, LNCS 204, Springer-Verlag, p.448-459, 1985.[5℄ B. Br�uderlin. Automatizing geometri proofs and onstrutions. Proeedingsof Computational Geometry'88, LNCS 333, Springer-Verlag, Berlin, p.232-252,1988.[6℄ L. Brisoux-Devendeville, C. Essert-Villard, and P. Shrek. Exploration ofa solution spae strutured by �nite onstraints. 14th European Confereneon Arti�ial Intelligene, Workshop on Modelling and Solving Problems withConstraints, F:1-18, 2000.[7℄ J.-F. Dufourd. Algebras and formal spei�ations in geometri modelling. TheVisual Computer, 13:131-154, 1997.22
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