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Abstract. In this paper, we propose an approach aiming at optimiziegptx
rameters of automatic trajectory computation methods iaDBrain Stimula-
tion. Such methods are usually based on the search for atorajehat optimizes
surgical constraints or risk maps. Such constraints aréom®d together with a
weighting related to their respective importance. Usyalig weights are fixed
empirically, in cooperation with the surgeons. The progoapproach aims at
refining the weighting factors using a learning process drospective cases,
in order to fit at best the weights that are closer to the surgexpertise. We
present how this approach has been applied with successreopepative elec-
trode trajectory optimization tool. This preliminary wotkased on one patient
case, shows that it is possible to retrieve the weights spording to a given
performed trajectory.

1 Introduction

Deep Brain Stimulation (DBS) is one surgical answer to Pestan’s disease or essential
tremors for patients with severe symptoms who do not respafido medication. The
intervention consists in implanting one (or several) eta®(s) into deep locations of
the brain for electric stimulation causing an inhibitiontbe motor disorders. This
treatment is very efficient but the planning still challemgiThe planning phase mainly
relies on the study of images (such as MRI and CT), acquiréaré¢he intervention.
Its objectives are to accurately locate the anatomicaktawmghich is often not easy to
find on usual images, and to find a secure path to the selectget far an electrode
to be inserted. This can be a tedious task, for which manyasewgeons expressed a
need for a computer-aided assistance. Many authors alsrlinet! the importance of
an accurate planning to avoid risks of side effects [18] ontvehage [3].

Recently, several authors reported methods for automatipatation of linear tra-
jectories for DBS electrodes [6, 4,5, 13, 14]. All approachee based on constraints
to be optimized or risks to be minimized. The constraintsisksrare usually defined
based on rules expressed by surgeons during interviewgamsldted into numerical



data based on patient specific multimodal medical imagesn Tifferent strategies

are defined for computing the optimal trajectory(ies) frammlsnumerical constraints.

The constraints are various and expressed different paeasnesed by the surgeon for
selecting the trajectory. For the automatic computatioamhethods required the com-
bination of the constraints into a single cost function. $hegical rules do not have the
same importance, implying the choice of different valuesieighting the constraints

within the search for an optimum.

So far, the weights have been chosen empirically by the dpee$ of the methods
or at best priori in cooperation with the neurosurgeons. In order to followaerob-
jective approach, Liu et al. proposed in [9] an approach fapéing the weighting fac-
tors to single surgeon. However, the computation of thenogitivalues for the weights
was done manually by subjective analysis of the computgelctiaries. In this paper,
we present the theoretical aspects of a generic and olgempigroach to retrieve au-
tomatically the weighting factors corresponding to a cinaslectrode trajectory, based
on a Bayesian strategy. Thgosteriori method is based on the post-operative analysis
of a patient case. We show the feasibility of the approactpipéyang it to a method of
DBS electrode trajectory computation we previously putdis[6] and for one patient’s
case. Then we discuss how this method will be used in furtioekswvith larger sets of
patients to learn the most accurate weights for a neurosatgyelearning from his/her
past cases, and to analyze the difference that could octwebe surgeons, between
medical centers, or between patients.

2 Materialsand Methods

2.1 Automatic Determination of Weights from Post-oper ative | mages

Bayesian Approach The solving process of our trajectory planning method sobve
linear combination of four cost functions to f, (for details about the used cost func-
tions, please refer to [6]). This linear combination candsernsas anain cost function f

to minimize, with weighting factora), to w, assigned to each individual cost function:

wi.f1 + wa.fo +ws.f3 +wa. fa
w1 + wo + w3 + wy

f=

When launched with fixed values for the weights, we obtaintao&andidate tra-
jectories that satisfy the constraints. The trajectdpy, providing the lowest result
Topt = f(w1, w2, w3, ws, Ty ) is indicated as the optimal trajectory.

The main hypothesis of methods that automatically compptenal trajectories
is that, for every trajectory chosen by a surgeon, it existeteof weights that allows
the automatic estimation of this trajectory. If we want tadfthese weights, we need
to try all possible combinations of weights, and launch facteone an optimization
process. For at least one of the experimented combinatio@sptimal solution will
fit the trajectory manually chosen by the surgeon. Expertmgrall possible combina-
tions would be very time-consuming. Indeed, if we consitiat ive currently have
weights to combine, and if we want to have a precisio.06f per weight, the opti-
mization process taking abo0t25 second per combination, it means that it will take



about100* % 0.25 seconds to compute, which represents neaiyo hours. To reduce
the computation time, we could have decreased the prea$itne weights. We chose
instead to use a Bayesian approach allowing an efficientdingrof the entire space of
combinations while keeping a very good precision and a regsde computation time.

The algorithm consists in first defining a maximum number ahbmationsi, .
that will be tested. We set,,,.. at 10,000, leading to a computation time of approx-
imately 40 minutes. Then, we start looping over weights combinatidtiseach step
1, wWe assign new values;; to w;4 for the four weights, randomly chosen betweken
and1 with a precision 0f3.107°. We launch the optimization process with the fixed
weights, and the trajectory converges to trajectdyy,, having the smallest result
Tiopt = Jf(Wi1, Wi, Wiz, wia, Tiope) fOr the main cost function. We compute the an-
gle a; between the trajectory actually performed by the surggeg, andT;,,:. Then
we comparey; with the smallest angle,,;, found so far: ifa; is smaller, then we
memorize this candidate trajectory as the nearest to thectg, i.e. we memorize
weightsw;; to w;4 and the associated angle becomes the new,,,;,,. The loop stops
wheni reaches,, ... At the end of the loop, ifv,..;,, is under0.1 degree, we can reason-
ably consider that we have found a candidate trajectoryectm®ugh to the trajectory
actually chosen by the surgeon, and therefore the assdciatebination of weights.

Search among the & most Optimal Trajectories In our software, all candidate tra-
jectories are represented as a map of colored entry poirttseesskin (Fig.1). The color
of each entry point depends on the result of the cost fundtonhe corresponding
trajectory. When visualizing the color map, we can obsenlered valleys. They are
centered around the best trajectorie§’, with a result of the main cost function very
close to the optimal trajectory,e. for which the result,, is such that, — rq,: < e.

It can happen that the difference between:th®est trajectories and the optimal trajec-
tories is insignificant. Therefore, we can suppose thatrijedtory actually chosen by
the neurosurgeoh,..,; might as well be one of those.

To take this observation into account, we extended our bearihiex most optimal
trajectories. The valleys are computed as the connectegp@oamts (CC) within the
search area inside which all entry points lead to a residt f such that — r,,, < ¢
(Fig.2). For a particular set of weights, according to theicé of = the number of CC
might not be the same: a higher valuezdhcreases the number of trajectories consid-
ered as one of the “best”, as well as the size of the valleyosading it. Reciprocally,
for a particulare, a different choice of weights combination can modify thenfer of
CC: valleys do not have the same shape, size or location,aand sonnected compo-
nents can appear, disappear, merge or split. As a consegjfeneach step of the
main loop the value of needs to be adjusted so that the numbef considered best
trajectories is always equal.

Optimizingx trajectories instead of one at each step increases the c¢atigotime
approximately by:. Therefore, to stay under the hour of computation, we trifdrént
combinations oft andi,,,..., still keeping the same precision for the weights. Detdils o
the experimented values and the obtained results are givdedtion 3.



Fig. 1. Snapshot showing the map of colored entry points on the gldulting from the solving
process. In white, the cortical sulci. The ventricles arélire. The STN is hidden by a sulcus.
The electrode computed as optimal is in red. On the color ithegbest entry points are shown
in green and the worst are in red, with intermediate colorefdry points with medium results.
We can observe 2 large and 1 very small green valleys.

2.2 Data

In this section, we explain the set of data and the image peitg algorithms and
pipelines we used in order to test our method. For now, it leenltested on one pa-
tient, and the results are shown in Section 3. However, therihms and pipelines are
reproducible on any patient image, and will be used in fusteistical studies to obtain
sets of optimal weights on numerous patients.

For the solving process, we first need 3D meshes of the viagréimd the vessels,
which are the main critical structures to avoid. If the véssannot be segmented with
a sufficient quality, we use instead the 3D mesh of the cdrsiclei, as surgeons of-
ten do in the current clinical routine, since most of the etsare located inside the
sulci. Additionally, we need the 3D meshes of the targetspincase the left and right
SubThalamic Nucleus (STN). Finally, we need an initial sbarea for the entry point
of the electrodei,.e. a 3D mesh of a selected portion of the scalp. All these ana&imi
structures can be processed from the pre-operative 3T Tdhteel MRI (1 mm x 1 mm
x 1 mm, Philips Medical Systems), acquired just before therirention.

The segmentation of scalp and cortical sulci and the geineraf the associated
triangle meshes were done automatically through the Bi&A\12] anatomical seg-
mentation pipeline [11]. Volumetric segmentation of thetvieular system was per-
formed through the Freesurferimage analysis suite. Spallyfiwe used the FreeSurfer
pipeline dedicated to the subcortical segmentation of d¢rztures [7], from which
the volumetric masks of the two lateral ventricles and thedtand fourth ventricles
were extracted. The corresponding surface triangle meshes generated using the
BrainVISA AIMS software library [12].

From the triangle mesh of the scalp, the initial area on tlie iskdefined interac-
tively using the Paraview viewer from Kitware [8] by sel@gtia portion of the mesh
located on the concerned side of the head. Ideally, thisquohias to be wide enough



(a) 3 connected components (b) 5 connected components

Fig. 2. Snapshots showing theconnected components on the skin mesh, representing tbgs/al
around ther best trajectories. Corresponding colored valleys can ée er Fig.1.

not to be too restrictive. However, the insertion point dd@amain anterior to the pre-
central sulcus, posterior to the hair area, and not too ¢tode ear area. Therefore, we
use those limits to define the initial area for each side obflaeral implantation.

Three-dimensional meshes of the targets (STN) were olttdgeregistering the
YeB atlas on the patient T1-weighted MR images. The YeB #lashree-dimensional
and histological atlas of the basal ganglia [17] that cdesifa set of 3D meshes repre-
senting the basal ganglia. It has been used for pre-opediinition of targets [1], per-
operative localization of electrophysiological recogirand post-operative anatomical
identification of stimulation electrode contacts [15]. TYeB atlas was built from a
post-mortem specimen, and also includes post-mortem MRisitiqns of the head.
This atlas can be adapted to the brain of a specific patierd, dgformation strategy
based on iconic registrations between the post-mortemremnpktient T1-weighted MR
images [2]. The resulting transformation is then applietheobasal ganglia 3D meshes
in the post-mortem atlas space, providing an individuataggaphy of the patient’s
basal ganglia.

Finally, we need the location of the trajectory actually o by the surgedf. ;.
The electrode can be segmented from the post-operative &i(8c44 mm x 0.44 mm
x 0.6 mm for post-operative acquisitions, GE Healthcare \6847, acquired few days
after the intervention. A rigid registration of the posteoative CT on the pre-operative
MRI is performed using Newuoa optimization [16] with Mutuaformation as cost
function. Then, we interactively segment the electrodehenGT and we extract a 3D
mesh from the segmented shape, thanks to MITK [10] funclites From this shape,
we extract the main axis of the electrode by using a Prindmmhponent Analysis
(PCA) (Fig.3(b)).

A snapshot showing all the anatomical structures we used ity are processed
and reconstructed as 3D meshes is shown on Fig.3(a).



(a) Full 3D scene (0) Trcar

Fig. 3. Snapshot showing the data. In the background, the pretbpmeMRI. In white, the cor-
tical sulci. The ventricles are in blue and the STN is in pifike electrode segmented from the
registered post-operative CT is in dark green, and the@gilanain axis is in light green. On the
top of the head, the initial zone is in orange.

3 Results

We experimented our approach on one patient with a bila&Td stimulation. We
applied the image processing pipelines described in Pgpad?.2 to obtain the triangle
meshes, and delineated two patches on the skin on both $ithestead to define initial
areas of interest. We present here the results for the lefidpdere.

For both sides, we applied our method for finding weights withfollowing values
of x: 1, 3 and 5. For each one, we chose a valueigf,, allowing us to keep the
computation time under one houk;., = 10,000 for x = 1, 4,4 = 5,000 for
r = 3, andi,g. = 3,000 for z = 5. Table 1 summarizes the results we obtained
for those combinations, for thi) trajectories closest t@)..,;. Snapshots illustrating
the results are shown on Fig.4. Computation times were céigply 36.51 min. for
x = 1,51.77 min. forz = 3, and31 min. for x = 5 for the left hemisphere. For the
latest, the computation time was lower because some coafigas could not provide
5 connected components and were quickly rejected.

On Table 1, we can see that with= 1 (i.e. if we consider only the most optimal
candidate trajectory) we can not find any combination of Weideading to an ap-
proximation of7;..,;. When extending the search to tBiéest connected components
(z = 3), we obtain combinations of weights leading to traject®riery close tdcq;.
The average difference 6f068 degrees can be considered as quite insignificant com-
pared to the errors due to the approximation of the segmeieettode. Extending the
search to thé best connected componenis £ 5) does not seem in this case to be
significant, as it does not provide trajectories closer,tg;.

We can notice that withk = 3 or z = 5 all the trajectories belong to the same con-
nected component (even for trajectaiyl of x = 5, where the connected component



Table 1. Results of the automatic computation of the combinationsv@fhts leading to the
“best” trajectories closest td...;. The first column indicates the conditions of the experiment
i.e. the value ofz. Then, for each condition, we show the weights to w;4 of the4 constraints
forthej =0, ..., 10 best trajectorie®’;. For eacli’;, we also show the number of the connected
component (CC) in whiclf is located, the angle;; betweenl; and7’..;, and the result;.
For comparison, we also shaw,,: and andr,...;, which are respectively the results pfor the
optimal trajectoryl,,: and for the surgeon’s trajectofy;..,; computed with weights fixed with
the previously used priori method.

L best CC
Conditions traj. 4 wij1 Wj2 wjs Wia | 4| @ rj Topt Treal

1 | 0.681| 0.076| 0.925| 0.877| 1 | 6.677 |0.533
2 | 0.439| 0.849| 0.553| 0.711| 1 | 6.708 |0.618
3 | 0.596| 0.958| 0.710| 0.675| 1 | 6.731|0.591
4 | 0.216| 0.475| 0.256 | 0.347 | 1| 6.742|0.624

o1 5 | 0.616| 0.304 | 0.714| 0.715| 1 | 6.747 |0.547
6 | 0.507| 0.414| 0.983| 0.964 | 1 | 6.749 |0.588
7 0.277 | 0.479| 0.441| 0.577| 1 | 6.753|0.622
8 | 0.262| 0.438| 0.532| 0.479| 1 | 6.754 |0.605
9 | 0.397| 0.982| 0.863| 0.920| 1 | 6.756 |0.630
10 | 0.748 | 0.489| 0.976| 0.873| 1 | 6.775|0.553
1 | 0.102| 0.649| 0.502 | 0.583 | 3 | 0.040 |0.712
2 | 0.267| 0.795| 0.956 | 0.727 | 3 | 0.048 |0.667
3 | 0.674| 0.583| 0.882| 0.345| 3 | 0.056 |0.541
4 | 0.052| 0.155| 0.593| 0.465| 3 | 0.063 |0.696
5 | 0.151| 0.727| 0.504 | 0.025 | 3 | 0.069 |0.627

r=3 6 | 0.690| 0.679| 0.956| 0.411 | 3 | 0.074 |0.555 0595 0676
7 | 0.156| 0.207 | 0.910| 0.118 | 3 | 0.074 |0.584
8 | 0.267| 0.281| 0.977| 0.364 | 3 | 0.084 |0.602
9 | 0.088| 0.602| 0.575| 0.299 | 3 | 0.084 |0.680
10 | 0.425| 0.045| 0.927| 0.808 | 3 | 0.084 | 0.609
1 | 0.246| 0.701| 0.835| 0.455| 4 | 0.040 |0.647
2 | 0.614| 0.317| 0.877| 0.323| 3 | 0.063 |0.523
3 | 0.262| 0.331| 0.743| 0.668 | 3 | 0.063 |0.652
4 | 0.236| 0.482| 0.917| 0.621| 3 | 0.074 | 0.654

5 5 | 0.163| 0.743| 0.659| 0.447 | 3 | 0.108 |0.675
6 | 0.132| 0.389| 0.557| 0.561 | 3 | 0.108 |0.689
7 | 0.646| 0.533| 0.777| 0.311| 3| 0.112 |0.534
8 | 0.250| 0.670| 0.712| 0.598 | 3 | 0.115|0.663
9 | 0.159| 0.276| 0.977| 0.788 | 3 | 0.125|0.679
10 | 0.221| 0.581| 0.885| 0.971| 3 | 0.125|0.691

is in fact the same but it wasn't numbered the same way). Thaexed components
are numbered according to the ordering of the “best trajegtbaround which they
are formed, i.e. connected componeé#it is around the optimal trajectory, connected
component2 is around the second most optimal trajectory, etc.



@)z =1,imae = 10000  (B) = = 3, imas = 5000 (©) = = 5, imas = 3000

Fig. 4. Snapshots showing thé trajectoriesl’; (in yellow) closest tdl..; (in green), for differ-
ent values ofrc. The combinations of weights leading to these traject@iegletailed in Table 1.
The optimal trajectoryl,,,» computed with our default weights is in red.

4 Discussion

One advantage of our approach is that could be easily appltedany trajectory plan-
ning method involving a linear combination of cost funcgoMoreover, we kept the
computation times less than one hour, so that this metholdl dmuused on a larger
study with many patients cases to process.

Our experiments with 3 different numbers of investigated I@ghlights that the
surgeon might not always have chosen manually the solutiatnis numerically com-
puted as the best one. This strengthens our idea that nobagrlybut several optimal
solutions, located in different CC of interest, need to beppsed to the surgeon in a
computed-aided help for trajectory planning. Moreovartlie computation of weights,
we also need to consider several CCs in case the surgeonclidiwse the one contain-
ing the most optimal. We noticed in this first experiment tiet surgeon had chosen
the third best CC. If we set the weights respectivelyutg = 0.246, w;s = 0.701,
w;z = 0.835, andw;4 = 0.455, which lead to one of the trajectories closesfig,;,
we obtain respectively a result; = 0.592 for the most optimal trajectory (C&1),
roce = 0.625 for CC #2, andrccos = 0.664 for CC #3 i.e. the one including’,.c;.
However, the results of the three best propositions stay withinaaf 0.072.

We can also notice that extending the search to more corthegteponents shows
no particular interest. In further works, we could restaat search directly to the con-
nected component including or being the closest{q;.

On Table 1, when comparing with r,,, andr,.q;, we observe that in some cases
r; is smaller tharr,,,. However, we need to keep in mind that the weights used to
compute the different; andr,,; are not the samey,,; was computed with weights that
were fixed with the previously usealpriori method (basicallyw; = 0.1, ws = 0.3,
ws = 0.3, wy = 0.3). This observation indicates that those weights we use@ wer
probably not chosen optimally. This comforts us in thinkihgt the weights should not
be fixeda priori, but should take into account the expertise of the surgedadming
from his/her past cases, which was the main motivation sfghidy.



There is no bijection between combinations of weights ardtion of optimal tra-
jectories. Several combinations of weights can lead todheestrajectory, as well as no
combination of weights can lead to the trajectory choserhbystirgeon.

The first situation can happen very often. It is not reallyaying if we only want to
find at least one combination of weights. It can become areigsue want to perform
a statistical analysis to find recurrent combinations ofgled and correlate them with
a surgeon, a medical center or a kind of clinical data. In¢thae some solutions could
be to memorize not only the best set of weights but seversl €etr study performed
on one patient case already shows that the 10 best comliadgiading to trajectories
closest tdl',..,; are composed of very different weights for eagh This underlines the
importance to investigate in the future the most recurrestgnificant combinations.

The second situation can happen if the surgeon has chosgbgersaceptionally,
a trajectory that does not match the usual surgical rulesinstance, if a patient has
severe symptoms but the only way to treat this patient iske taore risks than usual
because of the spatial configuration of the brain, the surgaght sometimes consider
taking this risk based on his/her experience, and choosgextory that would not be
considered by the software as possible. In that case, itwilbe possible to find any
combination of weights fitting the chosen trajectory.

5 Conclusion

In this paper we presented a new method to automaticaliypastithe weights of a lin-
ear combination of constraints defining the optimal placetoéan electrode for DBS.
The retrospective approach provides several possible icatitns of weights leading
to the same electrode trajectory than the one that was chiwsdinical routine by the
surgeon. Our approach uses a Bayesian method that perfarexsensive search over
the parameters space, while avoiding a very time-consuariddess precise exhaustive
search. The search is extended to several connected contpafi¢he solution space,
to be sure to include the objective trajectory.

The approach we presented here could be used with any nainenddlem involv-
ing a linear combination of functions with weights assigt@dach one. We showed in
our experiments with one particular trajectory planninggass using a linear combina-
tion of functions that we could find several candidate coratiams of weights. When
performed on a large set of patient images, this method doelldsed for a statistical
study to extract recurrent combinations.
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