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Abstract. In this paper, we propose an approach aiming at optimizing the pa-
rameters of automatic trajectory computation methods in Deep Brain Stimula-
tion. Such methods are usually based on the search for a trajectory that optimizes
surgical constraints or risk maps. Such constraints are combined together with a
weighting related to their respective importance. Usually, the weights are fixed
empirically, in cooperation with the surgeons. The proposed approach aims at
refining the weighting factors using a learning process on retrospective cases,
in order to fit at best the weights that are closer to the surgeons expertise. We
present how this approach has been applied with success on a preoperative elec-
trode trajectory optimization tool. This preliminary work, based on one patient
case, shows that it is possible to retrieve the weights corresponding to a given
performed trajectory.

1 Introduction

Deep Brain Stimulation (DBS) is one surgical answer to Parkinson’s disease or essential
tremors for patients with severe symptoms who do not respondwell to medication. The
intervention consists in implanting one (or several) electrode(s) into deep locations of
the brain for electric stimulation causing an inhibition ofthe motor disorders. This
treatment is very efficient but the planning still challenging. The planning phase mainly
relies on the study of images (such as MRI and CT), acquired before the intervention.
Its objectives are to accurately locate the anatomical target, which is often not easy to
find on usual images, and to find a secure path to the selected target for an electrode
to be inserted. This can be a tedious task, for which many neurosurgeons expressed a
need for a computer-aided assistance. Many authors also underlined the importance of
an accurate planning to avoid risks of side effects [18] or hemorrhage [3].

Recently, several authors reported methods for automatic computation of linear tra-
jectories for DBS electrodes [6, 4, 5, 13, 14]. All approaches are based on constraints
to be optimized or risks to be minimized. The constraints or risks are usually defined
based on rules expressed by surgeons during interviews and translated into numerical



data based on patient specific multimodal medical images. Then different strategies
are defined for computing the optimal trajectory(ies) from such numerical constraints.
The constraints are various and expressed different parameters used by the surgeon for
selecting the trajectory. For the automatic computation, the methods required the com-
bination of the constraints into a single cost function. Thesurgical rules do not have the
same importance, implying the choice of different values for weighting the constraints
within the search for an optimum.

So far, the weights have been chosen empirically by the developers of the methods
or at besta priori in cooperation with the neurosurgeons. In order to follow a more ob-
jective approach, Liu et al. proposed in [9] an approach for adapting the weighting fac-
tors to single surgeon. However, the computation of the optimal values for the weights
was done manually by subjective analysis of the computed trajectories. In this paper,
we present the theoretical aspects of a generic and objective approach to retrieve au-
tomatically the weighting factors corresponding to a chosen electrode trajectory, based
on a Bayesian strategy. Thea posteriori method is based on the post-operative analysis
of a patient case. We show the feasibility of the approach be applying it to a method of
DBS electrode trajectory computation we previously published [6] and for one patient’s
case. Then we discuss how this method will be used in further works with larger sets of
patients to learn the most accurate weights for a neurosurgeon by learning from his/her
past cases, and to analyze the difference that could occur between surgeons, between
medical centers, or between patients.

2 Materials and Methods

2.1 Automatic Determination of Weights from Post-operative Images

Bayesian Approach The solving process of our trajectory planning method solves a
linear combination of four cost functionsf1 to f4 (for details about the used cost func-
tions, please refer to [6]). This linear combination can be seen as amain cost function f

to minimize, with weighting factorsw1 tow4 assigned to each individual cost function:

f =
w1.f1 + w2.f2 + w3.f3 + w4.f4

w1 + w2 + w3 + w4

When launched with fixed values for the weights, we obtain a set of candidate tra-
jectories that satisfy the constraints. The trajectoryTopt providing the lowest result
ropt = f(w1, w2, w3, w4, Topt) is indicated as the optimal trajectory.

The main hypothesis of methods that automatically compute optimal trajectories
is that, for every trajectory chosen by a surgeon, it exists aset of weights that allows
the automatic estimation of this trajectory. If we want to find these weights, we need
to try all possible combinations of weights, and launch for each one an optimization
process. For at least one of the experimented combinations,the optimal solution will
fit the trajectory manually chosen by the surgeon. Experimenting all possible combina-
tions would be very time-consuming. Indeed, if we consider that we currently have4
weights to combine, and if we want to have a precision of0.01 per weight, the opti-
mization process taking about0.25 second per combination, it means that it will take



about1004 ∗ 0.25 seconds to compute, which represents nearly7, 000 hours. To reduce
the computation time, we could have decreased the precisionof the weights. We chose
instead to use a Bayesian approach allowing an efficient browsing of the entire space of
combinations while keeping a very good precision and a reasonable computation time.

The algorithm consists in first defining a maximum number of combinationsimax

that will be tested. We setimax at 10, 000, leading to a computation time of approx-
imately 40 minutes. Then, we start looping over weights combinations.At each step
i, we assign new valueswi1 to wi4 for the four weights, randomly chosen between0
and1 with a precision of3.10−5. We launch the optimization process with the fixed
weights, and the trajectory converges to trajectoryTiopt having the smallest result
riopt = f(wi1, wi2, wi3, wi4, Tiopt) for the main cost function. We compute the an-
gleαi between the trajectory actually performed by the surgeonTreal andTiopt. Then
we compareαi with the smallest angleαmin found so far: ifαi is smaller, then we
memorize this candidate trajectory as the nearest to the objective, i.e. we memorize
weightswi1 to wi4 and the associated angleαi becomes the newαmin. The loop stops
wheni reachesimax. At the end of the loop, ifαmin is under0.1 degree, we can reason-
ably consider that we have found a candidate trajectory close enough to the trajectory
actually chosen by the surgeon, and therefore the associated combination of weights.

Search among the x most Optimal Trajectories In our software, all candidate tra-
jectories are represented as a map of colored entry points onthe skin (Fig.1). The color
of each entry point depends on the result of the cost functionfor the corresponding
trajectory. When visualizing the color map, we can observe colored valleys. They are
centered around thex best trajectoriesTx with a result of the main cost function very
close to the optimal trajectory,i.e. for which the resultrx is such thatrx − ropt < ε.
It can happen that the difference between thex best trajectories and the optimal trajec-
tories is insignificant. Therefore, we can suppose that the trajectory actually chosen by
the neurosurgeonTreal might as well be one of those.

To take this observation into account, we extended our search to thex most optimal
trajectories. The valleys are computed as the connected components (CC) within the
search area inside which all entry points lead to a resultr for f such thatr − ropt < ε

(Fig.2). For a particular set of weights, according to the choice ofε the number of CC
might not be the same: a higher value ofε increases the number of trajectories consid-
ered as one of the “best”, as well as the size of the valley surrounding it. Reciprocally,
for a particularε, a different choice of weights combination can modify the number of
CC: valleys do not have the same shape, size or location, and some connected compo-
nents can appear, disappear, merge or split. As a consequence, for each stepi of the
main loop the value ofε needs to be adjusted so that the numberx of considered best
trajectories is always equal.

Optimizingx trajectories instead of one at each step increases the computation time
approximately byx. Therefore, to stay under the hour of computation, we tried different
combinations ofx andimax, still keeping the same precision for the weights. Details of
the experimented values and the obtained results are given in Section 3.



Fig. 1. Snapshot showing the map of colored entry points on the skin resulting from the solving
process. In white, the cortical sulci. The ventricles are inblue. The STN is hidden by a sulcus.
The electrode computed as optimal is in red. On the color map,the best entry points are shown
in green and the worst are in red, with intermediate colors for entry points with medium results.
We can observe 2 large and 1 very small green valleys.

2.2 Data

In this section, we explain the set of data and the image processing algorithms and
pipelines we used in order to test our method. For now, it has been tested on one pa-
tient, and the results are shown in Section 3. However, the algorithms and pipelines are
reproducible on any patient image, and will be used in futurestatistical studies to obtain
sets of optimal weights on numerous patients.

For the solving process, we first need 3D meshes of the ventricles and the vessels,
which are the main critical structures to avoid. If the vessels cannot be segmented with
a sufficient quality, we use instead the 3D mesh of the cortical sulci, as surgeons of-
ten do in the current clinical routine, since most of the vessels are located inside the
sulci. Additionally, we need the 3D meshes of the targets, inour case the left and right
SubThalamic Nucleus (STN). Finally, we need an initial search area for the entry point
of the electrode,i.e. a 3D mesh of a selected portion of the scalp. All these anatomical
structures can be processed from the pre-operative 3T T1-weighted MRI (1 mm x 1 mm
x 1 mm, Philips Medical Systems), acquired just before the intervention.

The segmentation of scalp and cortical sulci and the generation of the associated
triangle meshes were done automatically through the BrainVISA [12] anatomical seg-
mentation pipeline [11]. Volumetric segmentation of the ventricular system was per-
formed through the Freesurfer image analysis suite. Specifically, we used the FreeSurfer
pipeline dedicated to the subcortical segmentation of deepstructures [7], from which
the volumetric masks of the two lateral ventricles and the third and fourth ventricles
were extracted. The corresponding surface triangle mesheswere generated using the
BrainVISA AIMS software library [12].

From the triangle mesh of the scalp, the initial area on the skin is defined interac-
tively using the Paraview viewer from Kitware [8] by selecting a portion of the mesh
located on the concerned side of the head. Ideally, this portion has to be wide enough



(a) 3 connected components (b) 5 connected components

Fig. 2. Snapshots showing thex connected components on the skin mesh, representing the valleys
around thex best trajectories. Corresponding colored valleys can be seen on Fig.1.

not to be too restrictive. However, the insertion point should remain anterior to the pre-
central sulcus, posterior to the hair area, and not too closeto the ear area. Therefore, we
use those limits to define the initial area for each side of thebilateral implantation.

Three-dimensional meshes of the targets (STN) were obtained by registering the
YeB atlas on the patient T1-weighted MR images. The YeB atlasis a three-dimensional
and histological atlas of the basal ganglia [17] that consists of a set of 3D meshes repre-
senting the basal ganglia. It has been used for pre-operative definition of targets [1], per-
operative localization of electrophysiological recordings and post-operative anatomical
identification of stimulation electrode contacts [15]. TheYeB atlas was built from a
post-mortem specimen, and also includes post-mortem MR acquisitions of the head.
This atlas can be adapted to the brain of a specific patient, bya deformation strategy
based on iconic registrations between the post-mortem and the patient T1-weighted MR
images [2]. The resulting transformation is then applied tothe basal ganglia 3D meshes
in the post-mortem atlas space, providing an individual cartography of the patient’s
basal ganglia.

Finally, we need the location of the trajectory actually chosen by the surgeonTreal.
The electrode can be segmented from the post-operative CT scan (0.44 mm x 0.44 mm
x 0.6 mm for post-operative acquisitions, GE Healthcare VCT64), acquired few days
after the intervention. A rigid registration of the post-operative CT on the pre-operative
MRI is performed using Newuoa optimization [16] with MutualInformation as cost
function. Then, we interactively segment the electrode on the CT and we extract a 3D
mesh from the segmented shape, thanks to MITK [10] functionalities. From this shape,
we extract the main axis of the electrode by using a PrincipalComponent Analysis
(PCA) (Fig.3(b)).

A snapshot showing all the anatomical structures we used after they are processed
and reconstructed as 3D meshes is shown on Fig.3(a).



(a) Full 3D scene (b) Treal

Fig. 3. Snapshot showing the data. In the background, the pre-operative MRI. In white, the cor-
tical sulci. The ventricles are in blue and the STN is in pink.The electrode segmented from the
registered post-operative CT is in dark green, and the extracted main axis is in light green. On the
top of the head, the initial zone is in orange.

3 Results

We experimented our approach on one patient with a bilateralSTN stimulation. We
applied the image processing pipelines described in Paragraph 2.2 to obtain the triangle
meshes, and delineated two patches on the skin on both sides of the head to define initial
areas of interest. We present here the results for the left hemisphere.

For both sides, we applied our method for finding weights withthe following values
of x: 1, 3 and 5. For each one, we chose a value ofimax allowing us to keep the
computation time under one hour:imax = 10, 000 for x = 1, imax = 5, 000 for
x = 3, andimax = 3, 000 for x = 5. Table 1 summarizes the results we obtained
for those combinations, for the10 trajectories closest toTreal. Snapshots illustrating
the results are shown on Fig.4. Computation times were respectively 36.51 min. for
x = 1, 51.77 min. for x = 3, and31 min. for x = 5 for the left hemisphere. For the
latest, the computation time was lower because some configurations could not provide
5 connected components and were quickly rejected.

On Table 1, we can see that withx = 1 (i.e. if we consider only the most optimal
candidate trajectory) we can not find any combination of weights leading to an ap-
proximation ofTreal. When extending the search to the3 best connected components
(x = 3), we obtain combinations of weights leading to trajectories very close toTreal.
The average difference of0.068 degrees can be considered as quite insignificant com-
pared to the errors due to the approximation of the segmentedelectrode. Extending the
search to the5 best connected components (x = 5) does not seem in this case to be
significant, as it does not provide trajectories closer toTreal.

We can notice that withx = 3 or x = 5 all the trajectories belong to the same con-
nected component (even for trajectory#1 of x = 5, where the connected component



Table 1. Results of the automatic computation of the combinations ofweights leading to the
“best” trajectories closest toTreal. The first column indicates the conditions of the experiment,
i.e. the value ofx. Then, for each condition, we show the weightswj1 towj4 of the4 constraints
for thej = 0, . . . , 10 best trajectoriesTj . For eachTj , we also show the number of the connected
component (CC) in whichTj is located, the angleαj betweenTj andTreal, and the resultrj .
For comparison, we also showropt and andrreal, which are respectively the results off for the
optimal trajectoryTopt and for the surgeon’s trajectoryTreal computed with weights fixed with
the previously useda priori method.

Conditions
best

wj1 wj2 wj3 wj4
CC

αj rj ropt rrealtraj. # #

x = 1

1 0.681 0.076 0.925 0.877 1 6.677 0.533

0.595 0.676

2 0.439 0.849 0.553 0.711 1 6.708 0.618
3 0.596 0.958 0.710 0.675 1 6.731 0.591
4 0.216 0.475 0.256 0.347 1 6.742 0.624
5 0.616 0.304 0.714 0.715 1 6.747 0.547
6 0.507 0.414 0.983 0.964 1 6.749 0.588
7 0.277 0.479 0.441 0.577 1 6.753 0.622
8 0.262 0.438 0.532 0.479 1 6.754 0.605
9 0.397 0.982 0.863 0.920 1 6.756 0.630
10 0.748 0.489 0.976 0.873 1 6.775 0.553

x = 3

1 0.102 0.649 0.502 0.583 3 0.040 0.712
2 0.267 0.795 0.956 0.727 3 0.048 0.667
3 0.674 0.583 0.882 0.345 3 0.056 0.541
4 0.052 0.155 0.593 0.465 3 0.063 0.696
5 0.151 0.727 0.504 0.025 3 0.069 0.627
6 0.690 0.679 0.956 0.411 3 0.074 0.555
7 0.156 0.207 0.910 0.118 3 0.074 0.584
8 0.267 0.281 0.977 0.364 3 0.084 0.602
9 0.088 0.602 0.575 0.299 3 0.084 0.680
10 0.425 0.045 0.927 0.808 3 0.084 0.609

x = 5

1 0.246 0.701 0.835 0.455 4 0.040 0.647
2 0.614 0.317 0.877 0.323 3 0.063 0.523
3 0.262 0.331 0.743 0.668 3 0.063 0.652
4 0.236 0.482 0.917 0.621 3 0.074 0.654
5 0.163 0.743 0.659 0.447 3 0.108 0.675
6 0.132 0.389 0.557 0.561 3 0.108 0.689
7 0.646 0.533 0.777 0.311 3 0.112 0.534
8 0.250 0.670 0.712 0.598 3 0.115 0.663
9 0.159 0.276 0.977 0.788 3 0.125 0.679
10 0.221 0.581 0.885 0.971 3 0.125 0.691

is in fact the same but it wasn’t numbered the same way). The connected components
are numbered according to the ordering of the “best trajectories” around which they
are formed, i.e. connected component#1 is around the optimal trajectory, connected
component#2 is around the second most optimal trajectory, etc.



(a) x = 1, imax = 10000 (b) x = 3, imax = 5000 (c) x = 5, imax = 3000

Fig. 4. Snapshots showing the10 trajectoriesTj (in yellow) closest toTreal (in green), for differ-
ent values ofx. The combinations of weights leading to these trajectoriesare detailed in Table 1.
The optimal trajectoryTopt computed with our default weights is in red.

4 Discussion

One advantage of our approach is that could be easily appliedwith any trajectory plan-
ning method involving a linear combination of cost functions. Moreover, we kept the
computation times less than one hour, so that this method could be used on a larger
study with many patients cases to process.

Our experiments with 3 different numbers of investigated CChighlights that the
surgeon might not always have chosen manually the solution that is numerically com-
puted as the best one. This strengthens our idea that not onlyone, but several optimal
solutions, located in different CC of interest, need to be proposed to the surgeon in a
computed-aided help for trajectory planning. Moreover, for the computation of weights,
we also need to consider several CCs in case the surgeon didn’t choose the one contain-
ing the most optimal. We noticed in this first experiment thatthe surgeon had chosen
the third best CC. If we set the weights respectively towi1 = 0.246, wi2 = 0.701,
wi3 = 0.835, andwi4 = 0.455, which lead to one of the trajectories closest toTreal,
we obtain respectively a resultrCC1 = 0.592 for the most optimal trajectory (CC#1),
rCC2 = 0.625 for CC#2, andrCC3 = 0.664 for CC#3 i.e. the one includingTreal.
However, the resultsr of the three best propositions stay within anε of 0.072.

We can also notice that extending the search to more connected components shows
no particular interest. In further works, we could restrictour search directly to the con-
nected component including or being the closest toTreal.

On Table 1, when comparingrj with ropt andrreal, we observe that in some cases
rj is smaller thanropt. However, we need to keep in mind that the weights used to
compute the differentrj andropt are not the same:ropt was computed with weights that
were fixed with the previously useda priori method (basicallyw1 = 0.1, w2 = 0.3,
w3 = 0.3, w4 = 0.3). This observation indicates that those weights we used were
probably not chosen optimally. This comforts us in thinkingthat the weights should not
be fixeda priori, but should take into account the expertise of the surgeon bylearning
from his/her past cases, which was the main motivation of this study.



There is no bijection between combinations of weights and location of optimal tra-
jectories. Several combinations of weights can lead to the same trajectory, as well as no
combination of weights can lead to the trajectory chosen by the surgeon.

The first situation can happen very often. It is not really annoying if we only want to
find at least one combination of weights. It can become an issue if we want to perform
a statistical analysis to find recurrent combinations of weights and correlate them with
a surgeon, a medical center or a kind of clinical data. In thatcase some solutions could
be to memorize not only the best set of weights but several sets. Our study performed
on one patient case already shows that the 10 best combinations leading to trajectories
closest toTreal are composed of very different weights for eachwi. This underlines the
importance to investigate in the future the most recurrent or significant combinations.

The second situation can happen if the surgeon has chosen, maybe exceptionally,
a trajectory that does not match the usual surgical rules. For instance, if a patient has
severe symptoms but the only way to treat this patient is to take more risks than usual
because of the spatial configuration of the brain, the surgeon might sometimes consider
taking this risk based on his/her experience, and choose a trajectory that would not be
considered by the software as possible. In that case, it willnot be possible to find any
combination of weights fitting the chosen trajectory.

5 Conclusion

In this paper we presented a new method to automatically estimate the weights of a lin-
ear combination of constraints defining the optimal placement of an electrode for DBS.
The retrospective approach provides several possible combinations of weights leading
to the same electrode trajectory than the one that was chosenin clinical routine by the
surgeon. Our approach uses a Bayesian method that performs an extensive search over
the parameters space, while avoiding a very time-consumingand less precise exhaustive
search. The search is extended to several connected components of the solution space,
to be sure to include the objective trajectory.

The approach we presented here could be used with any numerical problem involv-
ing a linear combination of functions with weights assignedto each one. We showed in
our experiments with one particular trajectory planning process using a linear combina-
tion of functions that we could find several candidate combinations of weights. When
performed on a large set of patient images, this method couldbe used for a statistical
study to extract recurrent combinations.
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