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Abstract

Formal CAD solvers often produce many solutions for a constraint system. It
is very time-consuming to examine each of them to determine which one is the
closest to the user’s will. In our formal approach a construction plan is produced
as a mean to represent all the solutions. In this paper, we show how a construction
plan can be seen as a set of constraints of finite type. Then, we use some techniques
derived from the SAT problem to efficiently explore the solution space.

keywords: Formal geometric constructions; Symbolic constraint solving; SAT
problem; Tree pruning; Computer-aided design.

1 Introduction

In Computer-Aided Design (CAD), geometric constraints are used to specify rigid bod-
ies. In order to actually handle such specified objects, different kinds of solvers have
been used in CAD to compute solutions. The complete solvers are able to yield all the
solutions according to the user’s constraints. Unfortunately, the number of solutions is
often huge, so the complete exploration can be very tedious and time consuming. We
propose to use the constraint solving paradigm one more time to efficiently browse the
solution space. This paper is focused on this subject: we adopt the point of view of the
discrete finite constraints problems to describe and to structure the solution space.

Let us recall briefly the issues of geometric construction in CAD. When sketch-
ing an object, a draughtsman does not give an exact geometry to his drawing, but he
expresses it graphically by the way of some dimensional constraints like in the ele-
mentary example of Fig. 1. Given such a dimensioned sketch, a CAD solver produces
one, some or all the solutions meeting the requirements. In our example, we have
two solutions given Fig. 2. Of course, the problem of solving constrained figures has
been studied by many authors [44, 2, 8, 10, 11, 28, 31, 38, 39, 43] following very
different approaches which we divide in two main classes: numerical approaches and
formal methods. The first ones, mainly used in CAD, consist in solving numerically
the equation system related to the dimensions [23, 30, 31, 6, 14]. A formal resolution
of the symbolic constraints system allows to efficiently manipulate the defined figure
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Figure 1: 2 triangles configuration: the sketch

Figure 2: Two solutions

by varying parameters values [2, 10, 11, 17]. It is well known that algebraic tools
for formal calculus, e.g. computer algebra systems [21], are not sufficiently efficient.
On the contrary, we think that geometric formal methods are appropriate to efficiently
solve geometric constraints [17]. After so many studies, the subject seems yet not
topical. But, in our opinion, some aspects associated with the problem of solving geo-
metric constraint system remain incompletely solved, such as animation of constrained
figures, neutral points detection, taking into account margins of tolerance, dimension
transfers, debugging of constraint systems. The “credo” of one of us (P. Schreck) is
that the geometric formal approaches ensure to elegantly solve all these topics.

In this paper, we deal with another question which comes from the number of
solutions of a constraint system. Actually, a constraint system does not usually define a
single figure. When an infinite number of figures satisfies the constraints, the system is
saidunder-constrained. When the set of solutions is finite and non empty, the system
is saidwell-constrained. In the case of a well-constrained system, the exploration of
the solutions space is not as easy as it seems. Indeed, the existence of polynomial
equations whose degree is higher or equal to 2 from an algebraic point of view, or the
existence of multiple intersections from a geometric point of view, quickly leads to a
combinatorial explosion of the number of solutions.

Fig. 3 shows a sketch which is an extension of the example given by Fig. 1 and made
up of fifteen adjacent triangles. Moreover, the lengths of all their sides are requested to
be equal to a given dimension. In this case, we obtain 32768 solutions (triangles may
be superimposed). Some of them are presented on Fig.4.

A solver is saidcomplete if it is able to yield all the solutions,incomplete otherwise.
In most cases, CAD users only want one solution figure when they design an object.
Thus an incomplete solver cannot guarantee that the wanted solution is among the
produced ones and it is generally difficult to find another solution. On the contrary, in
the case of complete solving methods, the problem is to identify the figure expected by
the user between a lot of unwanted solutions [8] and [31]. In [20], we have proposed
a way to automatically select in favorable cases one solution among many. But since
there are unfavorable cases, and moreover the user expectations can be fuzzy or even
conflicting, we need some tools to efficiently explore the solution space. Let us note
that iterative methods are usually incomplete.



Figure 3: 15 triangles configuration: the sketch

Figure 4: Four solutions among 32768 to "15 triangles"

In this paper, we show how to take advantage of our view of formal geometric
resolution to propose such tools: we consider aconstruction plan as a set of finite
constraints rather than an algorithmic expression. Thus each variable occurring in the
construction plan must be instantiated in a finite set of numeric values and some vari-
ables depend on others. This way the solution space is not simply a set of figures but
a structured space. Then we take inspiration from the SAT problem to propose some
algorithms and user tools to increase the efficiency of the exploration.

The paper is organized as follows. Section 2 outlines our formal approach of con-
straints solving, and the relating notions. Section 3 exposes another vision of structur-
ing the solutions space. The interaction between the membership and the dependence
relations is presented in section 4 while our new heuristic is described in 5. Section 6
gives an overview of the interactive tools we propose.

2 Geometric constraint system solving

Although this is not the subject of this paper, we quickly present our preview works
on the formal geometric construction in order to explain precisely our notion of con-
struction plan. The original approach of our team was made a reality with the proto-
type called YAMS [33]. This is a formal 2D geometric solver associated with the 3D
topology-based modelerTopofil [5]. A precise description of this association can be
found in [18], so we will only present here the solver part, which acts in two stages, a
symbolic one and an interpretative one.

2.1 Symbolic resolution

In the first stage, given a dimensioned sketch, the solver associates the geometric ob-
jects with some identifiers, then turns the constraints into formal parameters to form
the geometric constraint system as it is defined below.



Definition 1 (Constraint system) A geometric constraint system is a triple
S = (X;A;C), whereX is a set of unknowns,A a set of parameters, andC a set
of constraints of the formC = fp1(X;A); : : : ; pm(X;A)g, where eachpi(X;A) is a
predicative term, namely a constraint, whose variables are inX or inA.

p1

p3

p2

l1

l2

a1

c2

c1
p5

p4

Figure 5: A sketch with constraints (left hand side) and identifiers association (right
hand side)

Example 1 An example of dimensioned sketch is shown on the left hand side of Fig.5.
The first object, made up of two line segments and an arc, is subjected to topological
constraints (incidence and adjacency) deduced from the sketch, and metric constraints
given by the user. As shown on the diagram, there are constraints on the lengths of the
two line segments, on the oriented angle between these segments and on arc and circle
radii. This arc is requested to have the same center as the circle that forms the second
part of the figure. The sketch as it is drawn does not respect the metric constraints, but
respects incidence and adjacency constraints. The right hand side of Fig.5 shows how
YAMS associates identifiers to geometric objects. By convention,pi, ci, li, ki, andai
are the chosen names for points, circles, lines, lengths and angles, respectively. The
corresponding constraint system is presented on Table 1.

Table 1: Constraints corresponding to Fig.6 example

egal_p(p5, p4) angle(p1, p2, p1, p3, a1) onc(p2, c1)

centre(c2, p5) distpp(p1, p2, k2) onl(p3,l2)

centre(c1, p4) distpp(p1, p3, k1) onl(p2, l1)

radius(c2, k4) fixorgpl(p1, l1, p2) onl(p1, l2)

radius(c1, k3) onc(p3, c1) onl(p1, l1)

When the user gives a dimensioned sketch, he actually provides YAMS some nu-
merical values, for exampledistpp(p1,p2,5), which are abstracted on the fly to
produce constraints, such asdistpp(p1,p2,k2) andk2 = initlength(5).

Then, according to the constraints, YAMS produces definitions of the form:
y := f(x1; : : : ; xk) that ensure correspondence between functional terms and identi-
fiers. The intuitive semantic of such a definition is “whenx1; : : : ; xk are built then use
functionf to constructy”, These definitions are produced as they are found to form a
list of definition, called construction plan and which is the result of the formal phase.



More formally, planT can be seen as a triangular solved system, such thatS � T , that
is for each instantiation� of the parameters ofA, the systemS� has exactly the same
solutions asT�.

Example 2 The construction plan corresponding to the constrained sketch of Example
1 is listed in Table 2. This plan is automatically computed by YAMS and the comments
are added by hand in order to make the understanding easier.

Table 2: A construction plan

k4 := initl(200) - give value 200 to length k4

k3 := initl(400)

a1 := inita(1.570796) - give value 1.570796 to angle a1

k2 := initl(300)

k1 := initl(200

p1 := initp(0,0) - give value (0, 0) to point p1

l1 := initd(p1,0) - line l1 is passing through p1 with slope 0

l2 := lpla(p1,l1,a1) - l2 through point p1 with angle a1 with a line l1

c3 := mkcir(p1,k2) - circle c3 has center p1 and radius k2

p2 := interlc(l1,c3) - p2 is in the intersec. of line l1 and circle c3

c4 := mkcir(p1,k1)

p3 := interlc(l2,c4)

c1 := medradcir(p2,p3,k3) - circle c1 through p2 and p3 and has radius k3

p5 := centre_of(c1)

c2 := mkcir(p5,k4)

In addition, YAMS contains some original features resulting in a powerful 2D
solver [18]. The solver is able to break the initial geometric constraint system into
smaller ones. This decomposition is a bottom-up process: the subsystems are discov-
ered during the solving process. The philosophy is to solve subfigures independently
and then to glue them together with a mechanism calledassembling. This allows to
use in YAMS a collaboration of several local methods, such as knowledge-based sys-
tems and Newton-Raphson method, coordinated by a multi-agent architecture with a
blackboard. An important hypothesis to ensure success is that the geometric constraint
system to solve has to bewell-constrained, that is it has a finite non-void set of solu-
tions.

2.2 Interpretative stage

In the second stage, the required dimensions are used to instantiate parameters for the
numerical interpretation of the construction plan. This instantiation is carried out by
interpreting the definitions of the formy := initx (numeric values ). Since us-
ing functional terms may provide multiple results, each functional symbol is associated
with a numericalmultifunction. For example, the intersection between a line and a cir-
cle, symbolized byinterlc, generally produces two points, andmedradcir that builds a
circle through two known points, with a known radius, generally produces two different
circles. It is often useful to give a numbering to the various values produced.

Definition 2 (numbering) Let f be a multifunction withn arguments and a maximum



of k results. Anumbering of f is a functionF with n+ 1 arguments such that

f(x1; : : : ; xn) = fF (x1; : : : ; xn; 1); : : : ; F (x1; : : : ; xn; k)g

whereF (x1; : : : ; xn; i) 6= F (x1; : : : ; xn; j) if i 6= j.

Thus a definition of the formy := f(x1; : : : ; xk) does not simply denote an assign-
ment but a membership relation:y 2 fF (x1; : : : ; xn; 1); : : : ; F (x1; : : : ; xn; k)g. From
an algorithmic point of view, the existence of multifunctions in a construction plan in-
troduces choices in the interpretation process: classically a backtracking mechanism
is used when a failure occurs or when another solution is needed. This backtracking
mechanism leads to considerer aninterpretation tree such as the one in Fig. 6 on the
right. Note that this way, the set of the numeric solutions of the constraint system is
structured by the construction plan: the order of the definitions give the shape of the
tree. The tree given in this example is complete: when two results are expected, two
values are produced. It may happen that some functions do not yield the maximal
number of values when a failure occurs. Thus we distinguish a potential solution tree
and an effective solution tree. In case of failure, an intelligent backtracking can be
used in order to prune efficiently the tree, but this mechanism is incomplete when the
backtracking occurs after reaching a successful leaf.
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k4 := initl(200)

k3 := initl(400)

a1 := inita(1.570796)

k2 := initl(300)

k1 := initl(200)

p1 := initp(0,0)

l1 := initd(p1,0)

l2 := lpla(p1,l1,a1)

c3 := mkcir(p1,k2)

p2 := interlc(l1,c3)

c4 := mkcir(p1,k1)

p3 := interlc(l2,c4)

c1 := medradcir(p2,p3,k3)

p5 := centre_of(c1)

c2 := mkcir(p5,k4)

numbering: 1 2 3 4 5 6 7 8

Figure 6: Construction plan corresponding to Fig.5 and tree of solutions

Example 3 A tree of solutions produced for our example after a parameters assign-
ment is presented on Fig.6, at the right of the construction plan. The eight numbered
solutions are shown on Fig.7. Each node corresponds to a result for an identifier, which
is written with the result number in brackets. Note that the results of p3 in the subtree
leading to solutions #5 to #8 are labeled the same way as in the subtree leading to
solutions #1 to #4 because p3 does not depend on p2, so they really are identical. We
show below how to exploit this feature.

A construction plan is a list of definitions whose order is given by the solver, but not
any list of definitions can be interpreted as a construction plan. Indeed, any variable
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Figure 7: The generated solutions

must appear one and once as a left member of a definition and when it does in the
definition y = f(x1; : : : ; xk), all the variables xi must have been defined before.

3 Finite constraints and structured solution space

The previous section explains how the algorithmic aspect of a construction plan with
multifunctions naturally leads to a structuration of the solution space. One could think
that this structuring is artificial and depends closely on the way the constraint system
is solved rather than on the system itself. It is not really true. Consider a set E of
numeric solutions of a given numeric constraint system S = (C;X; ;). E is a set of
tuples (e1; e2; : : : ; en) whose components are values for the unknowns of X in order to
satisfy C. For each unknown xi, there is a number ni of possible values corresponding
to the ith component. Suppose we sort the unknowns according to the number of
possible solutions in order to have a tuple solution where ni � nj if i < j. Note
that there is only one solution for the first unknown i.e n1 = 1, thus all the tuples
have the same first component value. Then the set of solutions can be organized in a
tree structure by factorizing the common values: level i corresponding to the values
of component i, so each branch of the tree is a tuple of the set of solutions. If we do
not take into account the descendants order, there is one tree structure for each kind of
sorting of the unknowns, according to the number of possible solutions. One of these
trees corresponds to the interpretation tree provided by our construction plan.

This fact suggests to consider a construction plan from another point of view. This
is done by replacing definition y = f(x1; : : : ; xk) by the conjunction of constraints y 2
ft1; t2; : : : ; tmg and y ! x1; : : : ; y ! xk, in which ti = F (x1; : : : ; xk; i) and y ! x1
means y depend on the variable x1. As a consequence, the definition producing x1 must
be evaluated before the one producing y. Another type of constraint can be considered
namely x << y which means that the definition producing x is evaluated before the one
producing y. We have y ! x � x << y, but the opposite is false. The membership
relation with the effective order << relation corresponds exactly to a construction plan



Table 3: Combinatorial complexity of trees
First plan

k1 := initl(200) -- 1 node

k2 := initl(250) -- 1 node

k3 := initl(300) -- 1 node

a1 := inita(O.7) -- 1 node

a2 := inita(0.5) -- 1 node

p1 := initp(0, 0) -- 1 node

l3 := initd(p1, 0) -- 1 node

c2 := mkcir(p1, k3) -- 1 node

p3 := interlc(l1, c2) -- 2 nodes

c3 := mkcir(p1, k1) -- 2 nodes

c4 := mkcir(p3, k2) -- 2 nodes

p2 := intercc(c3, c4) -- 4 nodes

l2 := line(p1, p2) -- 4 nodes

l1 := line(p3, p2) -- 4 nodes

c1 := mkcins(l1, l2, l3) -- 16 nodes

l4 := lpla(p1, l3, a1) -- 16 nodes

l5 := lpla(p3, l3, a2) -- 16 nodes

p4 := interll(l4, l5) -- 16 nodes

Second plan

k1 := initl(200) -- 1 node

k2 := initl(250) -- 1 node

k3 := initl(300) -- 1 node

a1 := inita(O.7) -- 1 node

a2 := inita(0.5) -- 1 node

p1 := initp(0, 0) -- 1 node

l3 := initd(p1, 0) -- 1 node

c3 := mkcir(p1, k1) -- 1 node

c2 := mkcir(p1, k3) -- 1 node

p3 := interlc(l1, c2) -- 2 nodes

l4 := lpla(p1, l3, a1) -- 2 nodes

l5 := lpla(p3, l3, a2) -- 2 nodes

p4 := interll(l4, l5) -- 2 nodes

c4 := mkcir(p3, k2) -- 2 nodes

p2 := intercc(c3, c4) -- 4 nodes

l2 := line(p1, p2) -- 4 nodes

l1 := line(p3, p2) -- 4 nodes

c1 := mkcins(l1, l2, l3) -- 16 nodes

whereas the membership relation with the dependence order corresponds to all possible
interpretation orders.
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Figure 8: Sample example

We take advantage of this fact to find an order << compatible with ! and more
efficient from the user’s point of view. Let us take the small naive example of dimen-
sioned sketch on Fig. 8 and consider then two construction plans solving this dimen-
sioned sketch given on Table 3. The maximum number of nodes per level is indicated,
and mkcins refers to the function building the four circles (in general) tangent to three
lines. The number of solutions is equal to the number of leaves and is, of course, the
same for the two plans, but the total maximal number of nodes are respectively of 90
and 47. This fact is not important when only one branch is selected like in [20], but
it becomes interesting when a naive complete exploration is done. Moreover, it points
out the interdependence between the membership, ! and << relations (Note that in
our example, only 44 calculi are needed).

The three kinds of finite constraints described above are naturally associated with
abstract data types. Thus the dependence relation (!) corresponding to a well-formed



construction plan is a partial order over the variables: it can be represented by a DAG
that we call the dependence graph. The notion of multifonction is classically captured
by a function returning a list of values. In this case all the results are computed at the
same time: the advantage is that the global computation is often lighter than repeating
n times one computation, the drawback is that some unneeded values can be computed
for nothing. This list can also be filled when needed with the opposite advantages
and drawbacks. The membership relation is then represented as the membership in a
list. In the end, the previous relation << exactly corresponds to a construction plan,
i.e. a list of definitions which are all well-founded: in a definition, the arguments of
the functional term must be variables defined in previous definitions. The algorithmic
relation between! and << is that the order of the defined variables in a construction
plan is the result of a topological sorting over the dependence graph.

4 Membership and dependence relations

In finite constraints resolution, an intelligent backtracking is often used after a failure.
Let’s briefly describe it. Usually, naive backtracking because of a failure during the
interpretation of definition y = f(x1; : : : ; xk), is given by choosing the next solution
of definition y0 = g(z1; : : : ; zl), which is immediately over y. If y0 is not an argument
of y, computing again y = f(x1; : : : ; xk) leaves y still unchanged and leads to a new
failure.

In intelligent backtracking, the nearest argument of y is selected to continue inter-
pretation [32]. To go to the nearest argument it is necessary to use ! relation. This
method can reduce the search by pruning interpretation tree during a real failure. Ob-
viously, this method is not complete when it is used to compute all solutions. The next
algorithm allows complete exploration while the number of calculi is minimized.

b) intelligent backtracking

y = f(x) (failure)

x = f(t)

y = f(x) (failure)

x = f(t)

a) naive backtracking

Figure 9: Intelligent backtracking

With a construction plan, we of course have the logic:

y ! x1 ^ : : : ^ y ! xk ^ x1 := v1wedge : : : xk := vk
�

y 2 fF (v1; : : : ; vk; 1); : : : F (v1; : : : ; vk;m)g

that means that when arguments are not modified, the set f(x1; : : : ; xk) have not to be
computed again. This is patently obvious, classical backtracking has no memory, all
solutions of the cut branch are forgotten.

The method used is inspired by the Unix “make” program. Definitions are dated
and, during a computation, if the date of all arguments are older than the current defi-
nition, solutions are not computed again but stored solutions are used.



All solutions coming from computing multifunction are stored: either once if the
computing multifunction returns all solutions, or progressively when they are computed
as needed.

Each definition needs to have all computed solutions. For this, each definition is
associated with the list of produced values and a mark on the current value: during a
backtracking on this definition, if the next solution exists this mark is updated, other-
wise fail is returned.

During the computation of values of a definition, the dates of all arguments are
verified. If one of them is newer than the current definition, the list of solutions is
removed and the multifunction is computed with new values. Else the mark of current
solution is put back to the first solution. Algorithm 1 sums up this:

Algorithm 1 Procedure compute_solutions(D)
Require: D a definition
Ensure: list of solutions of D, if they exist

out empty
compute false
if sol not exists then

compute true
else

for each definition arguments a of D do
if when_compute_sol(a) > when_compute_sol(D) then

compute true
end if

end for
end if
if compute then

out compute_sol(D)
update_when_compute_sol(D)

end if
return out

� Procedure when_compute_sol(a) returns the date of definition a,

� Procedure update_when_compute_sol(D) updates the date of definition D.

� Procedure compute_sol(D) computes values of definition D, using the value
of its definition arguments and its multifunction.

With the worst construction plan given on Table 3 there is no failure, only 44 calculi
are computed, instead of 90 foreseen: values for l4, l5 and p4 are computed one time
(3 calculi) despite of 16 branches in the associated search tree to this construction plan
(48 calculi).

Even with a naive backtracking, this method allows to compute only necessary
calculi. But, in case of real failure, part of the search tree will be explored again even
if there is no solution. Fortunately, this method can be jointly used with intelligent
backtracking.

This method could be extended by storing more levels. That would take more place
in memory but be faster. This new method has not been tested yet.



5 Learning from failure

As we said previously, the size of the tree depends on the order of the definitions.
To reduce the number of nodes, two classes of heuristics can be distinguished: static
heuristics and dynamic heuristics.

Static heuristics can consist in reorganizing the definitions of the construction plan
using a topological sorting with respect to the dependence graph.

We study here a dynamic heuristic inspired from SAT technics. Let us first recall
the formal framework under consideration.

5.1 Going over SAT

SAT consists in checking the satisfiability of a boolean formula in conjunctive normal
form (CNF). A CNF formula is a set (interpreted as a conjunction) of clauses, where
a clause is a disjunction of literals. A literal is a positive or negated propositional
variable.

An interpretation of a boolean formula is an assignment of truth values to its vari-
ables. A model is an interpretation that satisfies the formula. Accordingly, SAT con-
sists in finding a model of a CNF formula when such a model does exist or in proving
that such a model does not exist. SAT is an NP-complete problem meaning that all
algorithms to solve it should be exponential in the worst cases, unless P = NP [12].

However, not all SAT instances do exhibit the same difficulty, with respect to usual
algorithms to solve them.

Recently, very simple stochastic search techniques have proved their efficiency in
solving large and hard consistent SAT problems (see e.g. [42, 41] [3] [27] [35]). How-
ever, such techniques are logically incomplete since they do not cover the whole search
space. Accordingly, they cannot be used as such to prove the inconsistency of SAT in-
stances (see however [34]). Actually, the most efficient logically complete techniques
are still based on the classical Davis Logemann Loveland’s procedure called DPLL.

Some new efficient versions of DPLL have been proposed recently, extending its
practical scope to a really significant extent. Among them, let us simply mention the
most efficient ones, namely C-SAT [7] [15], Tableau [13], POSIT [22], Satz [29], Rel-
sat [4], GRASP [32] and DP+TSAT [34, 36].

DPLL leads a binary search tree, whose vertices are labeled by a literal representing
their assignment in the partial interpretation, and whose nodes represent the subset of
clauses which have not been satisfied by the partial interpretation.

One of the key feature for efficiency in the DPLL procedure lies in its branching
strategy. Accordingly, many branching rules have been proposed in the literature ([26],
[7], [22]).

A new branching rule has been proposed by Brisoux et al. [9], inspired from Mor-
ris’s work [37], and can be described as follows: whenever some clauses have been
shown unsatisfiable at some steps of the search process, this information should not be
neglected in the remaining search process. On the contrary, in the development of the
other branches of the search tree it could be efficient to try to encounter these situations
of unsatisfiability again, everywhere and as soon as possible, modulo the other factors
allowing an efficient branching rule to be obtained. This can be done by selecting with
a higher priority the literals occurring in these clauses. A similar method had been pro-
posed by Abreu et al [1] for improving the execution of non-deterministic concurrent
logic languages.



This idea can be simply realized by adding a weight �c to each clause. Each time
DPLL selects a propositional variable that would immediately lead to inconsistency,
each initial clause c of the SAT instance that would be shown unsatisfiable at this step
of the search tree has its factor �c increased by a given value 
, and its importance is
thus increased in the further search.

5.2 Description

Algorithm 2 Procedure Interpretation(G)
Require: G a construction plan
Ensure: display solutions of G, if they exist

def head(G)
first_loop true
while stack_is_not_empty() or first_loop do

while def exists do
first_loop false
out compute_solutions(@def)
if out = NO_SOLUTION then

increase_weight(def)
reorganize(def,G)
def pop_after_reorganized()

else
def.position_solution next(def.position_solution)
if def.position_solution not exists then

def pop()
end if
add_to_computed_solution(def.position_solution)
if out = ONE_SOLUTION then

def next_in(G)
else

if out = MORE_ONE_SOLUTIONS then
push(def)
def next_in(G)

else
def next_in(G) (*out = MORE_ONE_SOLUTIONS_ALREADY_POP*)

end if
end if

end if
end while
display_computed_solution()

end while

We extend this heuristic to our problem by introducing a weight to each definition.
We propose to reorganize the definitions by taking into account this new feature.

The motivation behind this heuristic is the same as in the SAT problem: to favour
definitions that have lead to a failure at some previous steps of the search process,
without the need of recording anything else to reduce the search tree.

At the beginning, the weight of all definitions is set to a constant c, as in SAT. When
the function of the definition has no solution (this is a failure), its weight is increased



by one and the plan is reorganized taking into account this weight and the positions
of its argument definitions because this definition still verifies !. This procedure is
described more formally in Algorithm 2.

Procedure compute_solutions(@def) (where the sign @ stands for the address
of variable) updates def.solutions where solutions are stored. The position of the
current solution is indicated by def.position_solution. With its returned values,
it can be decided to reorganize the construction plan, by pushing/poping on a stack of
definitions (to simulate recursivity). Function pop_after_reorganized() pops all
values stored in the stack, between the old position of def and the new one. The top of
the resulting stack is returned.

Function increase_weight increases the weight of a definition by one, and func-
tion reorganize (def,G) tries to find the best place in the construction plan such
that all definitions are classified by decreasing weight, as much as possible, and that!
is respected.

Let def be the definition to be moved up in construction plan G. If the predecessor
of def in G is not an argument of def and if its weight is lower, then definition def can
be inserted before it. This procedure can be repeated until a good place is found. That
gives the following procedure:

Algorithm 3 Procedure reorganize(def,G)
Require: def a definition, G its construction graph
Ensure: G reorganized taking into account the weight

current def
here current
pred current
exit false
while not exit and (weight(current) > weight(pred)) and no_top_of(G) do

if respect_NADS(current) then
pred current
current before(current)

else
here pred
exit true

end if
end while
if here 6= def then

insert_at(def,here)
end if

� Procedure weight(d) returns the weight of definition d,

� Procedure respect_NADS(def) returns true if it respects relation!, when def-
inition def is moved,

� Procedure insert_at(def,here) inserts definition def after definition here in
the construction graph.

The new YAMS procedure allows dynamical reorganization. After computing all
solutions, the order of definitions is almost optimal if there had been enough failures.



6 User management of constraints

The algorithms used in previous sections are transparent for the user: the finite con-
straints are handled by the software in order to cut down the number of calculi during
the complete exploration of the interpretation tree. Despite these efforts, it remains
often many solutions to be examined by the user due to the sort of constraints, and this
task quickly becomes tedious even if each solution is efficiently computed. We propose
here some tools which can help the user to progressively select a few solutions. These
tools are not yet implemented. The main idea is that the user can manage the finite
constraints with the help of intuitive high level operations.

For instance, the control of the interpretation order can be given to the user. Since
the dependence relation cannot be broken, the algorithm which reorganizes the con-
struction plan using the weight of definitions can be used. Thus the user can change
the priority of some parts of the figure in order to speed up the backtracking of this
part or in the contrary, to freeze another part by increasing the weight of some defi-
nitions. This way the user can affect smoothly relation << which gives the order of
interpretation.

The user can more radically act on the interpretation process without changing
relation <<. A proposed tool consists in grouping definitions in order to make a block
of definitions whose behaviour will be the same as a plain definition:

fig := block(def1; def2; :::; defm)

where fig is a tuple made up of the variables defined by def1; : : : ; defm. Thus, the
entire block is moved when its relative weight changes, the value of the whole interpre-
tation of the block is memorized and a freezing of the block is easier done. This method
is based on the optimization of the membership relation by storing a large part of it.
For the user, the main advantage is to be able to freeze a whole subfigure (numerically
or syntaxically by numbering a branch of this partial subtree) or to limit the backtrack-
ing to this block. This approach is favoured by our decomposition method which leads
to consider subfigures as independent of the rest of the figure to some extend. Thus,
natural blocks exist in the construction plan.

Another approach seems very promising: regarding the list of definitions as a list
of clauses, we plan to use tools inspired from Prolog debugger. With these tools, the
user can execute step by step the construction plan, force the examination of another
value given by a multifunction, put some spy points, and so on. These tools take into
account membership and relations <<. Moreover, with our data structure, we can
take advantage of the dependence relation by allowing the user to return back to the
arguments of a given definition and then to backtrack from this node. There are many
such tools and we have to embed them it with some user-friendly graphic interface,
but we have not studied this problem yet. The graphical nature of our problem is well
suited in order to develop some intuitive tools for exploring a wide-ranging finite set.

7 Conclusion

Geometric formal resolution is well suited for parametric design in CAD. In this paper,
we present some technics to take advantage of this approach: the construction plan is
managed as a set of finite constraints in order to speed up its interpretation and to give
to the user some exploration tools.



The “fi rst fail” approach is used by means of coming from the SAT problem: some
other heuristics could be adapted later. Note that this work is still in progress. Some
experiments have to be done to adjust the parameters of our heuristics. And the user-
friendly tools are still to be developed.

Nevertheless, we think that the technics used in CSP in general can be fruitfully
used in this domain and in return, the tools developed in this framework can be used in
other domains.
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