
Statistical Study of Parameters for Deep Brain Stimulation
Automatic Preoperative Planning of Electrodes
Trajectories

Caroline Essert · Sara Fernandez-Vidal ·
Antonio Capobianco · Claire Haegelen ·
Carine Karachi · Eric Bardinet · Maud

Marchal · Pierre Jannin

Abstract Purpose Automatic methods for preoperative trajectory planning of
electrodes in Deep Brain Stimulation are usually based on the search for a path
that resolves a set of surgical constraints to propose an optimal trajectory. The
relative importance of each surgical constraint is usually defined as weighting pa-
rameters that are empirically set beforehand. The objective of this paper is to
analyze the use of these parameters thanks to a retrospective study of trajectories
manually planned by neurosurgeons. For that purpose we firstly retrieved weight-
ing factors allowing to match neurosurgeons manually planned choice of trajectory
on each retrospective case, secondly we compared the results from two different
hospitals to evaluate their similarity, and thirdly we compared the trends to the
weighting factors empirically set in most current approaches.

Methods To retrieve the weighting factors best matching the neurosurgeons
manual plannings, we proposed two approaches: one based on a stochastic sampling
of the parameters and the other on an exhaustive search. In each case, we obtained
a sample of combinations of weighting parameters with a measure of their quality,
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i.e. the similarity between the automatic trajectory they lead to and the one
manually planned by the surgeon as a reference. Visual and statistical analysis
were performed on the number of occurrences and on the rank means.

Results We performed our study on 56 retrospective cases from two different
hospitals. We could observe a trend of the occurrence of each weight on the number
of occurrences. We also proved that each weight had a significant influence on the
ranking. Additionally, we observed no influence of the medical center parameters,
suggesting that the trends were comparable in both hospitals. Finally, the obtained
trends were confronted to the usual weights chosen by the community, showing
some common points but also some discrepancies.

Conclusions The results tend to show a predominance of the choice of a trajec-
tory close to a standard direction. Secondly, the avoidance of the vessels or sulci
seems to be sought in the surroundings of the standard position. The avoidance
of the ventricles seem to be less predominant, but this could be due to the al-
ready reasonable distance between the standard direction and the ventricles. The
similarity of results between two medical centers tend to show that it is not an
exceptional practice. These results suggest that manual planning software may
introduce a bias in the planning by proposing a standard position.

Keywords Surgical Planning · Trajectory Optimization · Statistical Analysis ·
Deep Brain Stimulation · Neurosurgery

1 Introduction

Deep Brain Stimulation (DBS) is a reversible surgical treatment of neurological
disorders such as Parkinson’s disease or essential tremors, mostly proposed to
patients with severe symptoms who do not respond well to medication. The in-
tervention consists in implanting one or several electrodes into deep locations of
the brain to impulse an electric stimulation causing an inhibition of the motor
disorders. This treatment is very efficient but the planning is still challenging and
mainly relies on the study of preoperative MRI and CT [9].

The objectives of the preoperative planning are first to accurately locate the
anatomical target, and then to find a secure path for an electrode towards the
selected target. Even if some commercial workstations already propose an inter-
active assistance to these tasks, they remain manual and tedious, and can some-
times take up to one hour. That is why many neurosurgeons expressed a need for
a computer-aided automatic assistance for the whole process, and several research
groups worked on this topic. The literature also underlines the importance of an
accurate planning to avoid risks of side effects [15] or hemorrhage [2].

This paper focuses more particularly on the second part of the preoperative
planning: the optimization of the trajectories. Most of the current approaches are
based on solving surgical rules over the geometry of the anatomy: constraints to be
optimized or risks to be minimized, translated into numerical cost functions. How-
ever, all surgical rules do not have the same importance to the surgeon, implying
the choice of parameters values for weighting them within the search for an opti-
mum. When proposing solutions, the algorithms usually require the combination
of several cost functions into a single function with weighting factors. Most often,
these factors are chosen empirically, using the expertise of the neurosurgeons.
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The objective of this work is to study the use of weighting parameters by com-
paring trajectories automatically computed with trajectories manually planned
by surgeons. To this end, this study first strives to find the weights that lead to
automatic trajectories best matching the trajectories manually planned by the
neurosurgeons. Two approaches are proposed to guess those weights: the first one
is based on a stochastic strategy, and the second one is an exhaustive search. Both
use a generic and objective a posteriori approach on patients images. We report
the tests on 56 patients cases from two different medical centers, using an auto-
matic planning method that we previously validated and published [7]. Finally we
analyze and discuss the trends of the values and the similarities between centers.

2 Related Works

Recently, several authors reported methods for automatic computation of linear
trajectories for DBS electrodes [7,3,6,13,14]. All approaches are based on con-
straints to be optimized or risks to be minimized. They are usually defined based
on rules expressed by surgeons and translated into numerical data based on pa-
tient specific multimodal medical images. Then different approaches are defined
for computing an optimal trajectory from such numerical constraints that express
the strategies used by the surgeon for selecting the trajectory. Automatic methods
usually require the combination of the constraints into a single cost function. The
surgical rules do not have the same importance, implying the choice of different
values for weighting the constraints within the search for an optimum.

So far, the weights have been chosen empirically by the developers of the meth-
ods or at best a priori in cooperation with the neurosurgeons. In order to follow
a more objective approach and arguing that each surgeon has his/her own prefer-
ences, Liu et al. proposed in [10] an approach for adapting the weighting factors to
a single surgeon. In [11], by studying multi-site and multi-surgeon combinations,
the same authors showed that single optimal sets of factors might satisfy surgeons
even more that their own selection. Both papers outlined the complexity in tuning
the weighting factors and the need for further studies. In both papers, the com-
putation of the optimal weights values was done manually by subjective analysis
of the computed trajectories. The authors concluded that methods are needed to
learn surgeon’s preferences from training sets of retrospective clinical cases.

We present a learning based approach for automatic computation of weight-
ing factors from retrospective analysis. Beyond validation issues and definition of
imaging based constraints, the selection of the weighting is probably the most
difficult remaining point in the automatic computation of straight trajectories.

3 Materials and Methods

This section first details the main principle on which this work is based. Then,
the two approaches proposed to gather the combinations of weights closest to the
manual plannings are exposed: stochastic and exhaustive. Finally, we explain how
we set up our experiment, and the statistical analysis approach we used.
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3.1 Automatic Determination of Weights on Retrospective Manual Plannings

The solving processes of automatic trajectory planning approaches usually solve
a linear combination f of n cost functions fi with weighting factors wi assigned to
each individual cost function:

f =

∑n
i=1 wi.fi∑n
i=1 wi

(1)

When launched with fixed values for the weights, a set of candidate trajectories
that satisfy the constraints can be obtained. It can be graphically displayed as a
colormap, with colors representing values of f , as illustrated in Fig. 1(a) where only
feasible entry points are colored and displayed. One trajectory Tauto providing the
minimal result rauto = f(w1, ..., wn, Tauto) is indicated as the optimal trajectory.

Most of automatic trajectory planning methods try to mimic the surgeons
strategies. Therefore, the main hypothesis of known approaches is that, for every
trajectory manually chosen by a surgeon (let’s call it reference trajectory or Tref ),
a set of weights that allows to find automatically this particular trajectory exists.
If we want to find it, we should try all possible combinations of weights, and
launch for each one an optimization process. For at least one of the experimented
combinations, the optimal solution should fit Tref , or at least be very close. The
similarity criterion we have chosen to evaluate the proximity of an automatically
computed trajectory Tauto to Tref is the angle α between the two trajectories. The
target point is fixed to the one set by the neurosurgeon i.e. the tip of Tref .

Experimenting all possible combinations with a high precision would be very
time-consuming. If we consider 3 weights between 0 and 1 to combine, and a
precision of 0.01 per weight, an optimization process of about 0.1 second per
combination will lead to 1003 ∗ 0.1 seconds to compute, which represents nearly
28 hours for one patient case. To reduce the computation time, we could either
decrease the precision or use a stochastic approach allowing an efficient browsing of
the entire space of combinations while keeping a very high precision in a reasonable
computation time. Section 3.3 describes the first possibility, an exhaustive search
in limited precision. In the following, we describe the stochastic approach.

3.2 Stochastic Approach

This section recalls the main principles and extends the stochastic approach we
previously published in [8]. The proposed algorithm consists in first defining a
maximum number of combinations itermax that will be tested. We set itermax at
20, 000, leading to a computation time of approximately 30 minutes. Then, we start
looping over combinations of weights. At each step j, we assign new values wij

for the n weights, randomly chosen between 0 and 1 with a precision of 3.10−5.
The weights are normalized so that their sum is equal to 1 using the following
formula: w′ij =

wij∑n

h=1
whj

. Equation 1 can then be simplified to f =
∑n

i=1 w
′
ij .fi.

The optimization process is launched for step j with weights w′ij .

Our software that we used in our experiments, described in [7], finds for one
patient case and one combination of weights, one optimal trajectory corresponding
to the global minimum of f (see also [1]). Furthermore, it is also able to propose
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(a) 3 connected components (b) 3 locally optimal trajectories

Fig. 1 Snapshots showing a typical 3D scene with the result of a resolution process, displayed
as a color map where the best entry points are in green and the worst in red. In (a) three
connected components, representing valleys of locally minimal values of f are displayed in
purple. Corresponding locally optimal trajectories are displayed as green cylinders in (b). In
both images, the target is in black, the ventricles in blue, and the sulci are white and semi-
transparent for readability purposes. The MRI is not shown on these pictures. Complete 3D
scene for this patient can be seen in Fig. 2

m interesting alternatives corresponding to m local mimima of f . Indeed, it can
occur that the zone of possible entry points (insertion zone) is composed of several
interesting areas located in different parts, and each area contains a locally optimal
candidate trajectory, i.e. a trajectory for which r > rauto but r < rauto+ε (for more
details, refer to [7,8]). This case is illustrated in Fig. 1, where 1(a) shows in purple
three interesting connected components at different locations of the color map, and
1(b) shows their respective locally optimal trajectory. The number of alternative
propositions shown to the surgeon can be chosen by adjusting parameter ε. To
take this observation into account, we extended our search to the x “most optimal”
trajectories, i.e. the global optimum and the m = x − 1 best alternatives. In this
study, we limited x to 3, as it was observed in the preliminary study [8] that with
a lower number we could too often miss interesting trajectories, and with a higher
number we did not find better results.

At each step j, we compute angle αjk between the reference trajectory Tref
and each of the x locally optimal Tautojk . Then we compare αjk with the smallest
angle αmin we found so far: if αjk is smaller, Tautojk is saved as the nearest to the
objective, i.e. weights w′ij are saved and angle αjk becomes the new αmin. The
loop stops when j reaches itermax. The results are ranked according to angles α
and the 200 best combinations of weights w′ij leading to the smallest angles are
kept. Selecting a higher number of selected combinations would not be reasonable,
because it would be too difficult to analyze the results, more particularly for pair-
wise comparisons. The main bias of the stochastic approach is that the selection
of the 200 best combinations might not be representative of the solution space.

3.3 Exhaustive Approach

The main objective of the exhaustive approach is to compare for all patients the
same combinations homogeneously distributed in the solution space. As stated
above, for an exhaustive approach to be computed in a reasonable time, the pre-
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cision needs to be reduced. We have chosen to use a precision of 0.1 per weight,
which means 11 possible values from 0.0 to 1.0. In order to be even more efficient,
the normalization step has been avoided by choosing directly weights having a sum
equal to 1.0: a weight wh is chosen such that wh < 1−

∑h−1
i=1 wi. When all weights

w1, ..., wn−1 are chosen, the last weight wn can be deduced by wn = 1 −
∑n−1

1 wi.
In this study, we have used n = 3 soft constraints (see Section 3.4). When

w1 is fixed, then w2 needs to be smaller than 1 − w1, and w3 is deduced by
w3 = 1 − (w1 + w2). If w1 is 0.0, then there are 11 possibilities for w2 from 0.0
to 1.0, and then w3 is deduced accordingly. If w1 is 0.1 there are only 10 possible
values left for w2 from 0.0 to 0.9, and so on. When w1 is 1.0, then 0.0 is the
only possibility for w2. The total number of possible combinations of w1, w2, w3 is
equal to

∑11
1 i = 11∗12

2 = 66. With an optimization process of about 0.1 second
per combination, it takes less than 7 seconds for one patient case. A precision of
0.01 would lead to a number of combinations of

∑101
1 i = 5151, and a precision of

0.05 would lead to a number of combinations of
∑51

1 i = 1326 which are too large
numbers for subsequent analysis.

In the same way as the stochastic approach, an optimization process is launched
for each combination of weights, where x “most optimal” trajectories are com-
puted. The trajectories closest to Tref in terms of angle are saved. Finally, the 66
combinations are sorted according to the angle criterion.

3.4 Data and Pre-processing

3.4.1 Image Processing and 3D Scene

We performed our retrospective study on 28 anonymized patients datasets, 13 from
Hospital A, and 15 from Hospital B. All of these patients had undergone bilateral
DBS, making a total of 56 implantation cases in our study. All were treated for
Parkinson’s disease, and the target was the Subthalamic Nucleus (STN). By the
time of their treatment, the surgeons had not used our planning software. In the
following, we explain the image processing algorithms and pipelines we used in
order to perform our study.

We used preoperative images: 3T T1-weighted MRI (1.0mm x 1.0mm x 1.0mm,
Philips Medical Systems) for Pontchaillou Hospital subjects, and 1.5T T1-weighted
MRI (0.9373mm x 0.9375mm x 1.3mm, GE Medical systems) for Pitié-Salpêtrière
subjects, acquired just before the intervention. For the solving process, we seg-
mented 3D meshes of the ventricles and the sulci. Ventricles and vessels are the
main critical structures to avoid. However, vessels could not be segmented with a
sufficient quality based on MRI only, if angiography is not available as it is the
case in our datasets. We used the 3D mesh of the cortical sulci instead, as surgeons
often do in the current clinical routine, since most of the vessels are located inside
the sulci. Finally, a 3D mesh of a selected portion of the scalp was segmented as
an initial search area for the entry point of the electrode.

The segmentation of the scalp and cortical sulci and the generation of the as-
sociated triangle meshes were done automatically using the pyDBS toolbox [5].
Volumetric segmentation of the ventricular system was performed indirectly. The
Parkinson model in pyDBS suite includes a representation of the two lateral ven-
tricles and the third and fourth ventricles. This anatomical model is registered on
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Fig. 2 Snapshot showing the data as a complete 3D scene, for the same patient as in Fig. 1.
In the background, the preoperative MRI. In white, the cortical sulci. The ventricles are in
blue and the target is in black. On the top of the head, the initial zone is in orange.

each antatomical subject space (the deformation strategy is described in [5]) to
get the meshes of the ventricular structures in the subject space.

From the triangle mesh of the scalp, pyDBS selects automatically a portion of
the mesh located on the anterior part of the side of the head as the initial area on
the skin. Ideally, this portion has to be wide enough not to be too restrictive. How-
ever, the insertion point should remain anterior to the precentral sulcus, posterior
to the hair area, and not too close to the ear area. Therefore, those limits were used
in pyDBS to provide the initial area for each side of the bilateral implantations.

A snapshot showing all the anatomical structures after they were processed
and reconstructed as 3D meshes is shown in Fig. 2. The overall pyDBS pipeline
takes about 20 minutes per patient dataset, producing 2 cases (one per side).

3.4.2 Experimental and validation setup

In this specific study, we have used the automatic planning approach published in
[7], but it could have been applied to any other similar method using a weighted
sum of soft constraints. For this test, we have used three soft constraints ST, DS
and DV, associated to three cost functions fST , fDS , and fDV (with resulting
values in range [0,1]) and respective weights wST , wDS , and wDV (also in range
[0,1]). The first constraint, “ST” for Standard Trajectory, favors trajectories close to
a standard direction of 30◦ from the sagittal plane and 30◦ from the coronal plane
in the posterior-anterior direction, corresponding to typical angles of approach for
the STN target [12]. Commercial planning consoles usually suggest this typical
direction as the default proposition, and let the neurosurgeon refine it afterwards
according to the risks. This constraint was added in order to study the influence
of the use of commercial workstations. Its cost function fST is defined as equation
(2), where T is a candidate trajectory and ST is the standard trajectory:

fST =
angle(T, ST )

90
(2)

The two soft constraints most commonly used in the community have been
chosen to complete the set of rules, as there seems to be a strong consensus on



8

them: the distance to vessels and the distance to ventricules. As explained before,
vessels can not be segmented with a sufficient quality based on MRI only, so
this constraint is substituted by the distance to sulci where major vessels are
often located. Therefore, the second constraint “DS” (Distance to Sulci) is the
maximization of the distance to sulci, and similarly the third constraint “DV”
(Distance to Ventricles) is the maximization of the distance to ventricles. They are
typical “risk” constraints. Their associated cost functions are built on the model
of equation (3), where T is a candidate trajectory, AS is the anatomical structure
to avoid (sulci or ventricles), DminAS is the distance from which the trajectory is
considered as safe regarding structure AS:

fDAS
= Max

(
DminAS − dist(T,AS)

DminAS
, 0

)
(3)

Other constraints such as entry points restrictions for esthetic or functional
reasons are handled in a preliminary step defining the insertion zone.

For each case, we have also collected information about the manually planned
trajectory and target: coordinates of the entry point PE and target point PT .
The manually planned target point PT is used as the target for our automatic
optimization process. Tref is computed as the trajectory from PE towards PT .

3.5 Statistical Analysis Method

Let us recall that the three objectives of this study were: 1) to retrieve the weight-
ing factors leading to Tauto most similar to Tref , 2) to compare the results from
two different hospitals, and 3) to compare the trends to the weighting factors em-
pirically set. For each case, we have: one list of 200 combinations of weights for
the stochastic approach, and one list of 66 weights for the exhaustive approach,
each sorted according to the similarity criterion (angle α). The methods used to
analyze the datasets from the two hospitals were the following.

First, on the results obtained thanks to the stochastic approach, we counted
the number of occurrences of each weighting factor. This allowed to give a first
rough idea of the trend on a reasonably large dataset. However, 200 samples is too
large to perform pairwise comparisons. Moreover, as it will be shown in Section
4 the problem is that the distribution of the 20, 000 samples from which the 200
best were extracted was not homogeneous enough, due to the normalization, so
reducing the number of selected samples could bias the results.

Indeed, to produce the 20, 000 samples each weight was randomly chosen be-
tween 0 and 1, which leaded to a homogeneous tridimensional draw. However,
when normalized as explained in Section 3.2, the distribution is not homogeneous
anymore due to probability laws related to central limit theorem. In our case,
the combination of the three weights (1.0,0.0,0.0) can only happen if these exact
numbers are drawn before normalization, whereas a combination of (0.25,0.25,0.5)
can be obtained with the normalization of (0.125,0.125,0.25) or (0.25,0.25,0.5) or
(0.5,0.5,1.0) or any multiple in which none of the weights exceeds 1. For this reason,
the density of the draws is higher for medium weights.

Then in a second study, we performed a statistical analysis using the results
of the exhaustive experiment. We first calculated the mean ranking for each com-
bination of weights in order to identify if any trend connecting these factors could
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be identified. A correlation analysis between the mean ranking and each of the
weights was performed to evaluate its importance and statistical significance.

Based on this first analysis, we chose to select a subset of 20 constraints com-
binations: the 10 that led to the best ranking and the 10 that led to the worst
ranking. Using this subset, we performed an analysis of variance using a non-
parametric method, the Kruskal-Wallis analysis of variance by ranks, using the
labels as an independent variable and the rankings as a dependent variable.

Labels are strings containing numbers. They were used for convenience to rep-
resent combinations of weights as single values. They were built as follows: label
l = wST ∗ 1000 + wDS ∗ 10. In case l < 1000, some zeros were added at the begin-
ning of the number, so that the label always contains 4 digits. The two first digits
represent the first weight, and the two last digits represent the second weight.
The third weight can be deduced by a simple subtraction of their sum from 1.
For instance, label 0205 represents the combination (0.2,0.5,0.3), label 0004 rep-
resents the combination (0.0,0.4,0.6), and label 1000 represents the combination
(1.0,0.0,0.0) for weights (wST , wDS , wDV ).

4 Results

All experiments were performed on an Intel Core i7 CPU at 3.4 GHz and 8GB
RAM, equipped with a NVIDIA GeForce GTX 560 Ti GPU which is used to speed
up occlusion computation. The computation times for each case are: around 20
minutes per patient for the pyDBS pre-processing of images; around 2 to 5 seconds
to compute the insertion zone, which has to be done once for each case (twice per
patient); around 0.1 second to produce an optimal trajectory for one combination
of weights, leading to a processing time of 30 mn for the stochastic approach and
about 7 seconds for the exhaustive approach.

4.1 Stochastic Approach

First, we counted the number of occurrences separately for the three weighting
factors and both medical centers. The results are presented in Fig. 3, where the
values are discretized into ten lower precision values for readability purposes.

As mentioned in Section 3.5, these results have to be moderated by the pos-
sible bias due to the non-homogeneity of the distribution. The distribution of the
20, 000 samples of combinations of weights (wST , wDS , wDV ) after normalization
is illustrated in Fig. 4, where the three axis correspond to the three weights. The
points are located in the triangle representing the intersection between the plane
of equation x + y + z − 1 = 0 (where the sum of all point’s coordinates is equal
to 1) and the unity cube (that contains only coordinates that do not exceed 1). It
can be observed the density is higher with medium values in the combination.

In Fig. 3 we first observe that the results are quite comparable between both
sites. A preliminary trend can be observed, with a predominance of values in a
range [0.4;0.5] for wST , a range [0.0;0.5] for wDS , and a range [0.0;0.1] for wDV ,
i.e. high values of wST , medium values of wDS and low values of wDV .

This trend is also illustrated in Fig. 5 where the 200 combinations of weights
(wST , wDS , wDV ) leading to trajectories Tauto closest to Tref for three different
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(a) wST , Hospital A (b) wST , Hospital B

(c) wDS , Hospital A (d) wDS , Hospital B

(e) wDV , Hospital A (f) wDV , Hospital B

Fig. 3 Count of the occurrences of the different weights for the two hospital’s datasets. On
the x-axis, 10 different discretized values of weights 0.0, ..., 0.9 represent weights comprised
respectively in ranges [0.0, 0.1], ..., [0.9, 1.0]. On the y-axis, the sum of occurrences of the weights
within the defined ranges on a scale varying from 0 to 2000.

patients are displayed over the distribution. As we can see, most of the selected
combinations of weights represented by blue circles, green squares and pink trian-
gles are located in the above mentioned ranges. The statistical analysis presented
below intends to validate this result.

4.2 Exhaustive approach and statistical analysis

In Fig. 4, we superimposed the distribution of the 66 samples of combinations of
weights for the exhaustive method for a better understanding of their locations.
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Fig. 4 Distribution of the 20,000 samples of combinations of weights (wST , wDS , wDV ) for the
stochastic approach after normalization (small black dots). The evenly spaced red spheres are
the 66 samples of the exhaustive method. All of them are located within a triangle representing
the intersection between plane of equation x+ y + z − 1 = 0 and the unity cube.

Fig. 5 Among the 20,000 random samples tested, the 200 combinations of weights
(wST , wDS , wDV ) that provided the Tauto closest to Tref for 3 different patients are displayed
in green, blue and pink.

As presented in section 3.5 we first calculated the mean ranking for each com-
bination of weights. As shown in Fig. 6, we can observe that the mean ranking
seems to decrease when the first weight increases. The labels leading to the best
results are shown in the upper part of Table 2. These labels, in which the two first
digits are close to 10, correspond to high values of the first weight wST . Similarly,
the labels with the worst results, shown in the lower part of Table 2, have their
two first digits close to 00. These labels correspond to low values of wST . We thus
made the assumption that higher values of wST weight led to simulated trajec-
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Fig. 6 Mean ranking for each combination of weights with a 95% confidence interval. The
x-axis represents the combination of weights expressed as labels. The y-axis shows the mean
ranking values. A lower value of mean ranking suggests that the corresponding combination
of weights tends to lead to trajectories closer to the reference trajectory.

tories that were closer to those actually chosen by the surgeons. The oscillatory
trend that can also be observed is linked to the way the combinations of weights
are labeled.

To confirm this hypothesis, we ran separate correlation analysis between the
weights and the rank using Spearman’s rank correlation test. These three correla-
tion analysis were all statistically significant (p<0.001), showing that the results
were not due to random sampling. For the first weight wST , the calculated corre-
lation is ρ = -0.406, meaning that the rank is inversely correlated to the weight
value. The mean rank decreases while the value of wST increases (see figure 7).
For the second and the third constraints, the correlation values are ρ = 0.144 and
ρ = 0.263 respectively, meaning that the mean rank increases when wDS or wDV

increase (see figures 8 and 9). These results are summarized in Table 1.

In order to further validate these results, we also ran a Kruskal-Wallis analysis
of variance on the rankings, comparing the 20 labels: the 10 combinations leading
to the best rank and the 10 combinations leading to the worst rank. These labels
are summarized in Table 2. We chose to ran the analysis on this subset, since our
objective was not to compare the all set of labels, but to validate the trend we
identified with these previous results. Comparing all 66 labels would have led to

Table 1 Spearman’s correlation coefficients

wST wDS wDV

p-value < 2.2e−16 < 2.2e−16 < 2.2e−16

ρ-value −0.406 0.144 0.2630
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Fig. 7 Mean ranks for the values of the first weight wST , and regression line (in red).

Fig. 8 Mean ranks for the values of the second weight wDS , and regression line (in red).

Fig. 9 Mean ranks for the values of the third weight wDV , and regression line (in red).

confused results, and would have been hard to evaluate and interpret. Thus, we
eliminated from this analysis the labels that led to intermediary results.

The analysis of variance showed a significant influence of the labels on the rank
values (p<0.001). We thus ran a pairwise comparison using the Wilcoxon rank sum
test. All inter-group pairwise comparisons appeared to be significant (p<0.001).
On the other hand, all intra-group pairwise comparisons were not significant with
p>0.05. Again, this result validates that the differences between the 2 groups of
selected labels were not due to random sampling.

To determine if the medical center had an influence on the results, we also ran
an analysis of variance using site as an independent variable. The results showed
that the site had no significant influence on the rankings, with p>0.05.
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Group 1 0802 0901 0801 1000 0900 0702 0701 0800 0601 0700

Means 17.83 18.32 19.32 20.27 20.30 20.70 21.45 21.65 21.80 23.45

STD 20.47 16.41 17.95 16.29 17.63 16.48 19.91 18.68 18.37 19.20

Group 2 0003 0005 0004 0001 0103 0002 0105 0102 0104 0007

Means 49.34 48.70 48.49 47.18 46.89 46.38 45.01 44.25 43.30 43.18

STD 17.92 16.38 17.81 17.32 15.56 17.24 17.86 15.28 14.70 18.70

Table 2 Means of ranks for two subsets of labels (representing combinations of weights), along
with their standard deviations: Group 1 contains the 10 best labels leading to the lower mean
rank values. Group 2 contains the 10 worst labels leading to the higher mean rank values. Both
groups were found to be statistically different.

5 Discussion and Conclusion

Planning preoperatively a safe and optimal trajectory for DBS is a difficult exercise
which requires a lot of expertise. Many research groups have implemented their
own algorithms to help the neurosurgeons in this task, most of the time using a
weighted sum of cost functions representing rules, with weights empirically set. In
all cases, the approach aims at mimicking the surgeons decision-making process.
However, it has been highlighted in the literature, for instance by Bériault et al.

[4] and Liu et al. [11], that capturing the weights surgeons use implicitly is really
difficult. Even the constraints that each research group use cannot be considered
as unanimously accepted. Liu et al. even mention in [11] that surgeons of the same
site did not report using the same constraints. Moreover, they observed that when
asked to set manually the weights they intuitively use, both surgeons first tuned
the weights in a different manner, and could later be even more satisfied with
another setting. As there is a lack of ground truth and consensus, this study tried
to enlighten some implicit practices with an objective study.

The first observation is that there is a similarity of the results between both
hospitals, where surgeons are not used to work together. This statistically signif-
icant result strengthens our conclusions and allows us to hypothesize that this
study can be generalized, even if a larger study including more sites could help
in confirming this statement. At least, we can deduce that the results were not
biased nor influenced by a single site.

Secondly, the trends clearly show that when a high value is given to weight
wST , the rank is lower. It means that with a high value for the constraint of
proximity to a standard position, the automatically computed trajectory Tauto
gets closer to the manually planned trajectory Tref . Let us note that in many
patient cases, it was possible to find another combination of weights leading to an
optimal trajectory for which the distance to sulci and ventricles was larger, but a
little more distant to the standard direction. This means that the surgeon chose a
trajectory that our algorithm considered as suboptimal regarding the risk rules.

This result can be quite surprising at first, as we could expect a higher value
for the weighting factors associated to the risks (distance to sulci and ventricles).
Indeed, the default weighting proposed in our software, set in cooperation with
the neurosurgeons, was wST =0.2, wDS=0.4, wDV =0.4. In most other studies, ST
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constraint is not mentioned or used. Liu et al. mention in [11] that some surgeons
prefer the entry point to be near the coronal suture, which can somewhat be the
most comparable constraint. In their study, the weights chosen by two neurosur-
geons are around 0.56 for the proximity to the vessels and sulci together, 0.22 for
the proximity to the ventricles, and only 0.18 for the proximity to the suture. In
this system as in ours, the importance of this constraint compared to the others
might be underestimated and seems unforeseen.

A first hypothesis to explain this phenomenon might be a strong influence of
the use of the commercial planning workstations in the current practice of manual
planning. The surgeons often start the search by displaying the standard direc-
tion proposed by the workstation and browse in the vicinity to find an acceptable
path optimizing the other two rules. This could be due to a lack of time or low
ergonomics of existing interactive software to allow for a larger search in an easy
and efficient way. Another hypothesis is that other implicit rules are missing to
imitate more accurately the decision making process. However, this is more un-
likely as it would mean that there are many missing rules constraining the path
to stay always in the immediate vicinity of the standard axis. In any case, this
result suggests that further studies are needed, where this rule is suppressed and
the trajectories computed with/without the rule are rated by several surgeons to
determine if this rule is useful or if the standard axis proposed by the workstation
is biasing the search.

From our study, we also conclude that among the two remaining rules, the
risk due to the proximity to the sulci seems to be the most critical compared to
the proximity to the ventricles. This is consistent with the weights authors usually
empirically set for these two consensual rules, such as in [4,11] where higher values
are given to the maximization of the distance to vessels or sulci than the distance
to ventricles. This result confirms this intuitive setting. However, let us mention
that the very low weight indicated by the trend for DV rule can also be in some
way a consequence of the high weight ST, as the standard direction tends to be
already far enough from the ventricles.

Overall, the trends shown in this study confirmed the relevance of settings for
some weights such as distance to vessels/sulci and distance to ventricles, regarding
the surgeons’ past choices. But they also highlighted a strong influence of the
routinely proposed standard direction, which seem to be a starting point for the
path search and to constitute the central axis of a comfort zone. Further study
certainly need to be performed to confirm this hypothesis. If it is verified, an
interesting challenge would be to check if the use of preoperative assistance without
the use of any rule advantaging a proximity to a standard axis allows to modify
the decision making process compared to the current practice, while maximizing
the other rules, which would point out another benefit of using such tools.
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