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ABSTRACT

In CAD systems, symbolic geometric solvers allow
to provide, for a constrained sketch drawn by the de-
signer, a general construction program, that describes
how and in which order the objects must be built.
Then this program is interpreted to generate the re-
quired figure. If multiple solutions are produced, these
kind of solvers generally allow to scan the entire space
of the solutions found. After briefly recalling our
sketch-based selection method, that enables to easily
eliminate most of the solutions and to keep the only,
or at the worst the few solutions that have the best
likeness with the original drawing, we introduce a new
step by step interpretation mechanism implemented as
a debugger-like tool, that allows to browse the remain-
ing solutions tree in order to help the user choosing
the required solution.
Keywords
symbolic geometric constructions; constraint solving;
computer-aided design; tree pruning

1 INTRODUCTION

In Computer-aided design (CAD), a geometric ob-
ject can be precisely described by constraints. They
concern distances between points, angles between
lines, tangency of circles and lines, etc. Generally,
constraints are declaratively placed on a sketch. If we
wish to carry out calculations, simulations or man-
ufacturing, the object must really respect the con-
straints. Thus, a CAD system must be able to solve
them and give the possible solutions. This kind of
approach was initiated by I.E. Sutherland [9] with
Sketchpad and was then studied by many authors.

Whatever the approach, a constraint system does
not usually define a single figure. In the case of a
well-constrained system, the exploration of the solu-
tions space is not as easy as it seems. In most cases,
CAD users only want one solution figure when they
design an object. That’s why an important matter
of geometric solvers is identifying the solution that is
most consistent with the user’s expectations, as we
can see in [3] and [7]. The most common response
to this problem is the use of heuristics to filter the

results. When using a numerical method, the con-
strained figure is compared with each of the numeri-
cal solutions. This is generally characterized by slow
runtimes, and there is often more than one solution
left. Our symbolic approach allows us to take ad-
vantage of the construction program to compare the
sketch with a solution, and to define an easy-to-use
debugger-like tool if the solution space has even so to
be explored.

The rest of the paper is structured as follows.
Section 2 presents the constraint solving framework.
Then, Section 3 explains a basic construction pro-
gram evaluation. Section 4 shows how the sketch can
be used to find a good program’s evaluation and Sec-
tion 5 how using interactive tools. Finally, Section 6
concludes.

2 SOLVING WITH YAMS

YAMS (Yet Another Meta Solver) is the prototype
resulting from the merging of the 3D topology-based
geometric modeller TOPOFIL([2]) and a 2D geomet-
ric constraint solver. The construction programs (or
construction plans) on which we work are supplied by
the solver part of YAMS. That’s why we present here
quickly its functionalities.

The solver belongs to the family of symbolic solvers.
The solving process acts in two steps: first, a symbolic
phase that produces a construction program accord-
ing to the constraints; then a numerical phase inter-
prets this construction program. The symbolic stage
is obviously the most costly.

2.1 Solving the constraints
Constraints are predicative terms of the form
P (x1, . . . , xn), where P is a predicative symbol, and
xi are typed identifiers of geometric elements. Then,
denoting that the distance between a point p1 and
another point p2 is a length k1 can be written
distpp(p1, p2, k1). About thirteen different kinds of
constraints exist in YAMS. Among them, we distin-
guish metric constraints (such as distances, angles)
and Boolean constraints (such as incidence or tan-
gency). Note that this way of writing the constraints
is quite usual, and can be found, for instance, in [1, 4].
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Figure 1: A sketch with constraints (left) and identifiers
association (right)

During the symbolic solving, the numerical values
of distances and angles are not taken into account,
whereas they are given by the user with the rest of
the constraints. They only appear in a symbolic way
in the constraints under the form of typed identifiers
(for instance k1 in the example above, to represent
a length). The numerical values are associated to
these identifiers by functional terms, in definitions of
the form: x := f(x1, . . . , xn), where x is the defined
identifier, f a functional symbol, and xi the parame-
ters that can be either other identifiers or numerical
values. For example, if the user imposes a length to
be 100 units from point p1 to point p2, we express
it by a constraint distpp(p1, p2, k1) and a definition
k1 := initl(100), where initl initializes k1 to the value
100.

When capturing the data of a problem, these defi-
nitions are the first lines of the construction program
(that is a list of definitions), that will be supple-
mented during the symbolic solving with other defini-
tions. Let’s take an example: Fig.1 shows the placing
of the constraints on a sketch, and the identifiers asso-
ciation. The symbolic transcription of the constraints
and the definitions for this problem are the following:

Constraints
egal p(p5, p4) onl(p1, l1)
centre(c2, p5) distpp(p1, p2, k2)
centre(c1, p4) distpp(p1, p3, k1)
radius(c2, k4) fixorgpl(p1, l1, p2)
radius(c1, k3) onc(p3, c1)
onc(p2, c1) onl(p3,l2)
onl(p2, l1) onl(p1, l2)

angle(p1, p2, p1, p3, a1)

Definitions
k4 = initl(200) k3 = initl(400)
a1 = inita(1.570796) k2 = initl(300)
k1 = initl(200) p1 = initp(0,0)
l1 = initd(p1,0) l2 = lpla(p1,l1,a1)
c3 = mkcir(p1,k2) p2 = interlc(l1,c3)
c4 = mkcir(p1,k1) p3 = interlc(l2,c4)
c2 = mkcir(p5,k4) p5 = centre of(c1)

c1 = medradcir(p2,p3,k3)

Our solver gives a geometric answer to this prob-
lem, that has the advantage of producing several so-
lutions. The construction program given above ex-
presses the geometric construction yielded by the
solver, and describes, in the right order, the objects
to build and the operations to apply so as to obtain
a figure.

The numerical interpretation forms the subject of
the rest of this paper. For more details on sym-
bolic solving, see article [5] that explains this part
more precisely, notably the original general mecha-
nism of decomposition in subfigures and assembling
that YAMS uses to solve large systems.

2.2 Construction program
In the construction program, the list of definitions is
presented in triangular solved form, i.e. an identifier
used as parameter in a definition must have been de-
fined earlier in the program. Note that by switching
two definitions in a construction program, it is possi-
ble to obtain an equivalent one, as long as the result
is still in triangular solved form.

In a general way, a set of definitions can be struc-
tured as a Direct Acyclic Graph (DAG), called de-
pendence graph. Its vertices are the definitions, and
its oriented edges makes a link from a definition x =
f(x1, . . . , xn) to a definition y = g(y1, . . . ,x , . . . , ym).
A topological sort of a DAG gives a list of vertices such
that a vertex does not appear in the list before its suc-
cessors. For a DAG, there generally are several pos-
sible topological sorts which, in our case, correspond
to the different possible construction programs. Note
that all these possible programs provide exactly the
same solutions, after a numerical interpretation.

Therefore, even if the solver gives a particular con-
struction program, we can choose another order for
the definitions, taking into account the dependencies,
without affecting the solutions.

3 INTERPRETATION

3.1 Tree of interpretation
In this stage, the data given by the user are exploited
as parameters for the numerical interpretation of the
construction program.

Each functional symbol is associated with a nu-
merical function. But interpretation of a functional
term may provide multiple results. For example, the
intersection between two circles, symbolized by in-
tercc, generally produces two points, and medradcir
that builds a circle through two known points, with
a known radius, generally produces two different cir-
cles. So these are not simple functions, but what we
call multifunction, i.e. functions that can give more
than one result.

The existence of multifunctions in a construction
program introduces choices in the interpretation pro-
cess. So, we can consider the interpretation as the
building of a tree labeled with numerical values. The
interpretation of a multifunction that can produce up
to k results generates a branching of degree k. By
giving a numbering to the various solutions produced
by each multifunction, we number the branches of
the tree. At the end, the tree represents the solution
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space, and one solution corresponds to the labels of
one branch.

We have to distinguish two kinds of trees :
- the tree of the possible solutions, made by only

taking into account the degrees of multifunc-
tions, and whose number of branches is maxi-
mum. This one is called tree of possibilities

- the tree of the effective solutions, made by inter-
pretation with real values parameters, and that
may have less branches than the tree of possibil-
ities. This one is called tree of solutions

The difference is caused by several kinds of events
that may occur during the interpretation process. A
multifunction may provide less results because of par-
ticular data (for example if two circles are tangent,
the intersection has only one result), or even a “fail-
ure” (for example if those circles have no intersec-
tion). In this last case, the interpretation stops in
the branch.

Note that practically, in our prototype, the tree is
not really built but explored by a depth-first back-
tracking.
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k3 = initl(400)

a1 = inita(1.570796)

k2 = initl(300)

k1 = initl(200)
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c3 = mkcir(p1,k2)
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p3 = interlc(l2,c4)
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c2 = mkcir(p5,k4)
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Figure 2: Construction program corresponding to Fig.1
and tree of solutions

3.2 Problems due to a high number of solu-
tions

Even if the tree of solutions is lighter than the tree
of possibilities, the number of solutions can be very
important, and increases with the length of the con-
struction program (that depends on the number of
geometric entities of the sketch). That’s why, at first,
we would like to minimize the size of the tree, in or-
der to speed up the backtracking used to explore the
tree.

A first pruning can be done by eliminating what
we call the “false solutions”. Actually, the computed
construction program enables to construct all the so-
lutions as well as other figures which are not con-
sistent with the constraints, because the geometric
solver only uses necessary conditions to make the con-
struction. This can be done with a simple test, by
verifying if the constraints are satisfied.

1) 2) 3) 4)

5) 6) 7) 8)

Figure 3: The generated solutions

The figures corresponding to the branches of the
tree given in the previous section on Fig.2 are shown
on Fig.3. Four of these solutions (numbered 3, 4, 5
and 6) can quickly be eliminated because the sign of
angle a1 is the opposite of what is given in the con-
straints. Moreover, among the remaining solutions,
we can eliminate #7 and #8 that are identical to #1
and #2 apart from displacements.

But that may be insufficient. In the example pre-
sented on Fig.5, there are 32768 different solutions
for a geometric object made of 15 equilateral trian-
gles figure, but the solution space can not be reduced
because all of the figures are consistent with the con-
straints. Other heuristics are necessary to drastically
prune the tree of solutions, eliminating the figures
that does not look like the sketch.

4 USING THE SKETCH

4.1 Usual criteria of likeness
Likeness is generally defined as conformity in appear-
ance between things. Two figures are usually said to
look like each other if some geometric properties are
similar, such as:

- orientation of points,
- relative placing of objects,
- angles acuteness,
- convexity of some parts of the figure.
This definition is used in most of the CAD frame-

works to eliminate inappropriate solutions.
However, most of these criteria can be held in check

by some simple examples. For instance, Fig.4 illus-
trates that sometimes we are not able to decide be-
tween two solutions by only comparing the geometric
properties : in this figure, all angles are acute and all
points have the same relative placing and orientation.

4.2 Freezing of a branch
In order to eliminate a maximum number of solu-
tions that does not look like the sketch, we proposed
another definition of likeness (see [6]). This defini-
tion is based on the notions of geometric homotopy,

3



a

k1

k2
(a) sketch

(b) two solutions

Figure 4: Lack of discrimination criterion

continuous deformation of a constrained system, and
continuous numbering of the solutions.

For each metric multifunction we use in our solver,
we described a particular continuous numbering of its
distinct results. This continuous numbering allows us
to use an original method to find the figure that has
the best likeness with the sketch.

We first make an interpretation of the construction
program, using as parameters the data measured on
the sketch drawn by the user. This interpretation pro-
duces a tree of solutions, among which lies the branch
corresponding to the sketch. We memorize the num-
ber of this branch. Then, it only remains to make
another interpretation, using the user’s data as pa-
rameters, and to follow the branch which number has
been memorized. With the properties we explained
before, we are sure that the figure we found has the
same geometric characteristics than the sketch, and
looks like it in the sense that we defined. We call this
process freezing of a branch. The branch is selected
and its number is kept for further interpretation, with
new numerical values for the parameters. The other
branches of the tree are not cut, so the other solutions
are not lost and can be examined later.

This method give very good results when all the
multifunctions used in the construction program are
metric. As an example, Fig.5 shows a sketch made up
of fifteen adjacent triangles. The lengths of all their
sides are asked to be equal to a given dimension. This
kind of configuration was studied by Owen [8], and is
known to have 2p−2 distinct solutions, where p is the
number of points. In our case, with 17 points, we ob-
tain 32768 solutions (triangles are often superposed,
because their sides are equal). Some of them are pre-
sented on Fig.6. The corresponding construction pro-
gram has 80 definitions, and the system contains 94
constraints. It takes more than 1 minute to calculate
all possible solutions, whereas our method gives an
instantaneous good answer, presented on Fig.7.

However, our method is not appropriate when
Boolean constraints (such as tangency or equality be-
tween objects) are present in the construction pro-
gram. Indeed, it is impossible to compare the solu-
tions with the sketch when some information is miss-
ing in the sketch. Actually, unlike metric constraints
that don’t affect topology, these constraints are gen-

Figure 5: 15 triangles configuration: the sketch

Figure 6: Five solutions among 32768 to ”15 triangles”

Figure 7: The required solution of the sketch given on
Fig.5

erally not respected on the sketch.

Because of these Boolean constraints, some sys-
tems have a tree of solutions that can not be reduced
to a single branch. Its number of branches can be
decreased down to a few branches, but there still
remains a little subtree to be explored. It may also
happen that the user is not satisfied with what the
solver found, whether the sketch he drew was not
precise enough, or he did not expect such a solution
for the constraints he gave. For all these reasons, the
user may want to interactively explore, either the
subtree of solutions, or the rest of the entire tree of
solutions, and to examine solutions that are close to
the frozen branch.

5 INTERACTIVE SOLUTION REFINING

All the above reasons led us to propose some func-
tionalities to explore the solution space within YAMS.
Remember this solution space is not simply a set of
figures, but a structured space. The solutions tree
and the construction program structures we use of-
fer us the possibility to define an exploration tool,
inspired by debug tools provided by most of the de-
velopment systems in software engineering.
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5.1 A step by step interpretation
First, remind that in the case where the user wants
to explore the entire solution space, the number of
solutions (i.e. of branches in the tree) can be very
important. So, viewing the solutions one after the
others may be a tedious task.

Suppose that the figure is not yet numerically com-
puted. A good way to browse efficiently the solutions
can be to explicitly choose, at each branching of the
tree, which branch to follow, thanks to a step by step
interpretation.

However, there are two kinds of definitions. Some
definitions correspond to objects that can be seen by
the user. In the rest of this paper, they will be called
sketch definitions. Some other definitions correspond
to auxiliary objects. For instance circles that are used
to find a point, by making an intersection with a line.
They will be called auxiliary definitions. As the geo-
metric entities defined by auxiliary definitions are not
drawn on the screen, it is difficult to choose which
values to keep for them. Moreover, the user is not in-
terested in the construction of intermediate objects,
that has to be completely transparent to him. So, an
idea is to make a step in the interpretation only at
the sketch definitions.

At each step, we work on a layer (see Fig.8). In the
layer, the last definition is a sketch definition, and the
others are auxiliary definitions. The different possi-
ble values for the concerned object are proposed, and
the user can choose one of them. It means that for
this operation, a little subtree is explored. This sub-
tree contains a few branchings corresponding to the
auxiliary definitions within the layer to which a multi-
function of degree > 2 is assigned. So, a backtracking
is done into this layer, but this backtracking is hid-
den from the user, in order to make it transparent.
Then, when a interpretation is chosen for the current
sketch definition, the corresponding branch is frozen
in this layer. See Fig.8, where the branch that has
been frozen so far is in bold, the current studied layer
is between dashed lines, and the visible objects in the
sketch are framed.

The construction program may not be provided by
the solver in the best form for this operation. It can
be necessary to perform a topological sort of the pro-
gram before the step by step interpretation.

Indeed, we need to have the following criterion on
the construction program: let d1 and d2 be two sketch
definitions, d1 being placed after d2 in the construc-
tion program, such that no other sketch definition ex-
ists between d1 and d2. Then, all definitions between
d1 and d2, that are obviously auxiliary definitions,
are the remaining definitions that are necessary to
compute d2 and that have not been required before
d1.

In order to obtain such a form, we have to sort
the construction program. The topological sort is
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Figure 8: Backtracking on a little subtree, included in a
layer of the solutions tree

made by placing first the sketch definitions following
the current order, and then interleaving the auxiliary
definitions just before the first sketch definition that
needs it (i.e. that contains it as an argument).

When a construction program verifies the above cri-
terion, the only backtracking to be done is located in
the subtree between d1 and d2, excluding d1. If the
user is not satisfied with the numerical interpreta-
tions proposed for d2, and wishes to see other possi-
ble solutions, then we are sure that some of the sketch
definitions have to be thrown back into question.

In such a case, we browse the sketch definitions
that have been defined earlier, and on which d2 de-
pends. We suggest to the user to reconsider some of
the values he had chosen for these previous sketch def-
initions. First, we propose him to review only a few of
them, those that are placed closer in the tree. Then,
progressively we put into consideration more defini-
tions, including those that were defined a longer time
ago.

On Fig.9, we can see a step by step interpretation
of the constrained sketch of Fig.1. At each step ((a),
(b), or (c)), the user chooses one of the two available
results. The part of the figure that has already been
frozen is in thick, the chosen value is in thin, and the
value that was not accepted is in dashed line.

5.2 Our debugger-like tool
The method exposed above is implemented as a mod-
ule of YAMS, and the user has the choice to use it or
not, and to start it when he needs.

Practically talking, we draw the solution step by
step as the interpretation goes along. For each new
object drawn on the solution figure, the corresponding
part of the sketch is highlighted. This way, the user
can easily follow the construction process. At each
step, YAMS proposes a set of possible choices for the
current object to be drawn. When the user chooses

5



p1 p2(1)p2(2)

(a) 1st step

p1 p2

p3(1)

p3(2)

(b) 2nd
step

p1 p2

p3

c1(2)

c1(1)

(c) 3rd step

p3

p1 p2

c1

(d) end of in-
terpretation

Figure 9: Interpretation in 3 steps, and final result

one, it is constructed on the figure and YAMS goes
on to the next step.

One of the objectives we want to reach, and that
is being developed, is to be able to revise a solution
that has already been completely constructed. So,
we would be able to make first an interpretation with
the “freezing of a branch” technique, and then either
to choose between the remaining solutions (if there
were Boolean constraints), either to suggest other
close solutions if the user is not completely satisfied.

6 CONCLUSION

In this paper, we first exposed our symbolic ap-
proach of geometric constructions for CAD con-
straints solving. We explained that our prototype
YAMS provides a general construction program, that
is afterwards numerically interpreted. Then, after
showing how we can prune the solution space repre-
sented by a tree, we put forward the remaining prob-
lems that led us to find a way to easily browse the
solutions tree.

As a solution, we proposed a tool that is based
on the idea of a step by step numerical interpreta-
tion. This debugger-like tool is used in case the prun-
ing method did not manage to find one unique solu-
tion because of the presence of Boolean constraints,
or in case the user is not satisfied with the solution.
This mechanism can be enhanced with several kinds
of breakpoint tools. Moreover, it is possible to offer
the opportunity to freeze a part of a tree of solutions
between two breakpoints, and then to skip this part

as if it was a big step.
Our debugger-like tool is a first stage in the con-

ception of a series of exploration tools. We plan to
add another one that would be based on the idea of
a magnetic grid. It would allow a more intuitive ap-
proach of the selection problem. On the basis of a
solution, a user could drag a misplaced element of
the figure towards one of the positions allowed by the
tree of solutions.

7 REFERENCES

[1] B. Aldefeld. Variations of geometries based on a
geometric-reasoning method. Computer-Aided
Design, 20(3):117-126, 1988.

[2] Y. Bertrand, J.F. Dufourd. Algebraic specifi-
cation of a 3D-modeller based on hypermaps.
Computer Vision - GMIP, 56(1):29-60, 1994.

[3] W. Bouma, I. Fudos, C. Hoffmann, J. Cai,
and R. Paige. Geometric constraint solver.
Computer-Aided Design, 27(6):487-501, 1995.
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