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ABSTRACT

In CAD systems, symbolic geometric solvers allow to
provide, for a constrained sketch drawn by the de-
signer, a general construction program, that describes
how and in which order the objects have to be built.
Then this program is numerically interpreted to pro-
duce the required figure. If multiple solutions are gen-
erated, these kind of solvers generally allow to scan the
entire space of the solutions found. In this paper, we
first briefly recall our sketch-based selection method,
that enables to easily eliminate most of the solutions
and to keep the only, or at the worst the few solutions
that have the best likeness with the original drawing.
Then, we expose two methods to help the user choos-
ing the required solution: after explaining our step
by step interpretation mechanism implemented as a
debugger-like tool, that allows to browse the remain-
ing tree of solutions, we introduce a new method to
interactively touch up a solution, or a part of a solu-
tion.
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1 INTRODUCTION

In Computer-aided design (CAD), a geometric object
can be precisely described by constraints. They con-
cern distances between points, angles between lines,
tangency of circles and lines, etc. Generally, con-
straints are declaratively placed on a sketch. If we
wish to carry out calculations, simulations or manufac-
turing, the object must really respect the constraints.
Thus, a CAD system must be able to solve them and
give the possible solutions. This kind of approach was
initiated by I.E. Sutherland [8] with Sketchpad and
was then studied by many authors.

Whatever the approach, a constraint system does
not usually define a single figure. In the case of a
well-constrained system, the exploration of the solu-
tions space is not as easy as it seems. In most cases,
CAD users only want one solution figure when they
design an object. That’s why an important matter

of geometric solvers is identifying the solution that is
most consistent with the user’s expectations, as we
can see in [3] and [7]. The most common response
to this problem is the use of heuristics to filter the
results. When using a numerical method, the con-
strained figure is compared with each of the numerical
solutions. This is generally characterized by slow run-
times, and there is often more than one solution left.
Our symbolic approach allows us to take advantage of
the construction program to compare the sketch with
a solution, and to define easy-to-use tools to manip-
ulate a solution, if the one proposed is different from
what the user expected.

The rest of the paper is structured as follows.
Section 2 presents the constraint solving framework.
Then, Section 3 explains a basic construction program
evaluation. Section 4 shows how a step by step inter-
pretation can be done, and Section 5 propose a tech-
nique to manipulate a solution. Finally, Section 6 con-
cludes.

2 SOLVING WITH YAMS

YAMS (Yet Another Meta Solver) is the prototype
resulting from the merging of the 3D topology-based
geometric modeller TOPOFIL ([2]) and a 2D geomet-
ric constraint solver. The construction programs (or
construction plans) on which we work are supplied by
the solver part of YAMS. That’s why we present here
quickly its functionalities.

The solver belongs to the family of symbolic solvers.
The solving process acts in two phases: first, a sym-
bolic phase that produces a construction program ac-
cording to the constraints; then a numerical phase
interprets this construction program. The symbolic
stage is obviously the most costly.

Solving the constraints
Constraints are predicative terms of the form
P (x1, . . . , xn), where P is a predicative symbol, and
xi are typed identifiers of geometric elements. Then,
denoting that the distance between a point p1 and
another point p2 is a length k1 can be written
distpp(p1, p2, k1). About thirteen different kinds of



Figure 1: A sketch with constraints (left) and identifiers
association (right)

constraints exist in YAMS. Among them, we distin-
guish metric constraints (such as distances, angles)
and Boolean constraints (such as incidence or tan-
gency). Note that this way of writing the constraints
is quite usual, and can be found, for instance, in [1, 4].

During the symbolic solving, the numerical values
of distances and angles are not taken into account,
whereas they are given by the user with the rest of
the constraints. They only appear in a symbolic way
in the constraints under the form of typed identifiers
(for instance k1 in the example above, to represent a
length). The numerical values are associated to these
identifiers by functional terms, in definitions of the
form: x := f(x1, . . . , xn), where x is the defined iden-
tifier, f a functional symbol, and xi the parameters
that can be either other identifiers or numerical val-
ues. For example, if the user imposes a length to
be 100 units from point p1 to point p2, we express
it by a constraint distpp(p1, p2, k1) and a definition
k1 := initl(100), where initl initializes k1 to the value
100.

When capturing the data of a problem, these defi-
nitions are the first lines of the construction program
(that is a list of definitions), that will be supplemented
during the symbolic solving with other definitions.
Let’s take an example: Fig.1 shows the placing of the
constraints on a sketch, and the identifiers association.
The symbolic transcription of the constraints and the
definitions for this problem are shown on Tables 1 and
2.

Table 1: Constraints

Constraints
egal p(p5, p4) onl(p1, l1)
centre(c2, p5) distpp(p1, p2, k2)
centre(c1, p4) distpp(p1, p3, k1)
radius(c2, k4) fixorgpl(p1, l1, p2)
radius(c1, k3) onc(p3, c1)
onc(p2, c1) onl(p3,l2)
onl(p2, l1) onl(p1, l2)

angle(p1, p2, p1, p3, a1)

Table 2: Definitions

Definitions
k4 = initl(200) k3 = initl(400)
a1 = inita(1.570796) k2 = initl(300)
k1 = initl(200) p1 = initp(0,0)
l1 = initd(p1,0) l2 = lpla(p1,l1,a1)
c3 = mkcir(p1,k2) p2 = interlc(l1,c3)
c4 = mkcir(p1,k1) p3 = interlc(l2,c4)
c2 = mkcir(p5,k4) p5 = centre of(c1)

c1 = medradcir(p2,p3,k3)

Our solver gives a geometric answer to this problem,

that has the advantage of producing several solutions.
The construction program given above expresses the
geometric construction yielded by the solver, and de-
scribes, in the right order, the objects to build and the
operations to apply so as to obtain a figure.

The numerical interpretation forms the subject of
the rest of this paper. For more details on symbolic
solving, see article [5] that explains this part more pre-
cisely, notably the original general mechanism of de-
composition in subfigures and assembling that YAMS
uses to solve large systems.

Construction program
In the construction program, the list of definitions is
presented in triangular solved form, i.e. an identifier
used as parameter in a definition must have been de-
fined earlier in the program. Note that by switching
two definitions in a construction program, it is possi-
ble to obtain an equivalent one, as long as the result
is still in triangular solved form.

In a general way, a set of definitions can be struc-
tured as a Direct Acyclic Graph (DAG), called de-
pendence graph. Its vertices are the definitions, and
its oriented edges makes a link from a definition x =
f(x1, . . . , xn) to a definition y = g(y1, . . . ,x , . . . , ym).
A topological sort of a DAG gives a list of vertices
such that a vertex does not appear in the list after
its successors. For a DAG, there generally are several
possible topological sorts which, in our case, corre-
spond to the different possible construction programs.
Note that all these possible programs provide exactly
the same solutions, after a numerical interpretation.

Therefore, even if the solver gives a particular con-
struction program, we can choose another order for
the definitions, taking into account the dependencies,
without affecting the solutions.

3 INTERPRETATION

Tree of interpretation
In this stage, the data given by the user are exploited
as parameters for the numerical interpretation of the
construction program.

Each functional symbol is associated with a nu-
merical function. But interpretation of a functional
term may provide multiple results. For example, the
intersection between two circles, symbolized by in-
tercc, generally produces two points, and medradcir
that builds a circle through two known points, with
a known radius, generally produces two different cir-
cles. So these are not simple functions, but what we
call multifunction, i.e. functions that can give more
than one result.

The existence of multifunctions in a construction
program introduces choices in the interpretation pro-
cess. So, we can consider the interpretation as the
building of a tree labeled with numerical values. The



interpretation of a multifunction that can produce up
to k results generates a branching of degree k. By giv-
ing a numbering to the various solutions produced by
each multifunction, we number the branches of the
tree. At the end, the tree represents the solution
space, and one solution corresponds to the labels of
one branch.

We have to distinguish two kinds of trees :
- the tree of the possible solutions, made by only

taking into account the degrees of multifunctions,
and whose number of branches is maximum. This
one is called tree of possibilities.

- the tree of the effective solutions, made by inter-
pretation with real values parameters, and that
may have less branches than the tree of possibil-
ities. This one is called tree of solutions.

The difference is caused by several kinds of events
that may occur during the interpretation process. A
multifunction may provide less results because of par-
ticular data (for example if two circles are tangent, the
intersection has only one result), or even a “failure”
(for example if those circles have no intersection). In
this last case, the interpretation stops in the branch.

Note that practically, in our prototype, the tree is
not really built but explored by a depth-first back-
tracking.

Figure 2: Construction program corresponding to Fig.1
and tree of solutions

Problems due to a high number of solutions
Even if the tree of solutions is lighter than the tree
of possibilities, the number of solutions can be very
important, and increases with the length of the con-
struction program (that depends on the number of
geometric entities of the sketch). That’s why, at first,
we would like to minimize the size of the tree, in order
to speed up the backtracking used to explore the tree.

A first pruning can be done by eliminating what
we call the “false solutions”. Actually, the computed
construction program enables to construct all the so-
lutions as well as other figures which are not consis-
tent with the constraints, because the geometric solver
only uses necessary conditions to make the construc-
tion. This can be done with a simple test, by verifying
if the constraints are satisfied.

Figure 3: The generated solutions

The figures corresponding to the branches of the
tree given in the previous section on Fig.2 are shown
on Fig.3. Four of these solutions (numbered 3, 4, 5
and 6) can quickly be eliminated because the sign of
angle a1 is the opposite of what is given in the con-
straints. Moreover, among the remaining solutions,

we can eliminate #7 and #8 that are identical to #1
and #2 apart from displacements.

However, that may be insufficient, and in many
cases other heuristics are necessary to drastically
prune the tree of solutions, eliminating the figures that
do not look like the sketch.

For this reason, we proposed a new definition of
likeness based on the notions of geometric homotopy,
continuous deformation of a constrained system, and
continuous numbering of the solutions. It allowed
us to propose a new technique called freezing of a
branch: we first make an interpretation of the con-
struction program, using as parameters the data mea-
sured on the sketch drawn by the user. We memorize
the number of this branch. Then, it only remains to
make another interpretation, using the user’s data as
parameters, and to follow the branch which number
has been memorized. This method, explained with
more details in [6], gives very good results when all
the multifunctions used in the construction program
are metric. However, our method is not appropriate
when Boolean constraints (such as tangency or equal-
ity between objects) are present in the construction
program.

4 INTERACTIVE SOLUTION REFINING

Because of these Boolean constraints, some systems
have a tree of solutions that can not be reduced to
a single branch. Its number of branches can be de-
creased down to a few branches, but there still re-
mains a little subtree to be explored. It may also
happen that the user is not satisfied with what the
solver found, whether the sketch he drew was not pre-
cise enough, or he did not expect such a solution for
the constraints he gave. For all these reasons, the user
may want either to step interactively in the construc-
tion or to manipulate a solution figure.

All the above reasons led us to propose some func-
tionalities within YAMS. The tree of solutions and the
construction program structures we use offer us the
possibility to first define an exploration tool, inspired
by debug tools provided by most of the development
systems in software engineering.

A step by step interpretation
Suppose that the figure is not yet numerically com-
puted. A good way to browse efficiently the solutions
can be to explicitly choose, at each branching of the
tree, which branch to follow, thanks to a step by step
interpretation.

However, there are two kinds of definitions. Some
definitions correspond to objects that can be seen by
the user. In the rest of this paper, they will be called
sketch definitions. Some other definitions correspond
to auxiliary objects. For instance circles that are used
to find a point, by making an intersection with a line.



They will be called auxiliary definitions. As the geo-
metric entities defined by auxiliary definitions are not
drawn on the screen, it is difficult to choose which
values to keep for them. Moreover, the user is not
interested in the construction of intermediate objects,
that has to be completely transparent to him. So, an
idea is to make a step in the interpretation only at the
sketch definitions.

At each step, we work on a layer (see Fig.4), in
which the last definition is a sketch definition, and the
others are auxiliary definitions. The different possible
values for the concerned object are proposed, and the
user can choose one of them. It means that for this op-
eration, a little subtree is explored. This subtree con-
tains a few branchings corresponding to the auxiliary
definitions within the layer to which a multifunction
of degree > 2 is assigned. So, a backtracking is done
into this layer, but this backtracking is hidden from
the user, in order to make it transparent. Then, when
a interpretation is chosen for the current sketch defini-
tion, the corresponding branch is frozen in this layer.
See Fig.4, where the branch that has been frozen so far
is in bold, the current studied layer is between dashed
lines, and the visible objects in the sketch are framed.

Figure 4: Backtracking on a little subtree, included in a
layer of the tree of solutions

The construction program may not be provided by
the solver in the best form for this operation. It can be
necessary to perform a topological sort of the program
before the step by step interpretation.

Indeed, we need to have the following criterion on
the construction program: let d1 and d2 be two sketch
definitions, d1 being placed before d2 in the construc-
tion program, such that no other sketch definition ex-
ists between d1 and d2. Then, all definitions between
d1 and d2, that are obviously auxiliary definitions, are
the remaining definitions that are necessary to com-
pute d2 and that have not been required before d1.

In order to obtain such a form, we have to sort the
construction program. The topological sort is made by
placing first the sketch definitions following the cur-
rent order, and then interleaving the auxiliary defini-
tions just before the first sketch definition that needs
it (i.e. that contains it as an argument).

When a construction program verifies the above cri-
terion, the only backtracking to be done is located in
the subtree between d1 and d2, excluding d1. If the
user is not satisfied with the numerical interpretations
proposed for d2, and wishes to see other possible so-
lutions, then we are sure that some of the sketch def-
initions have to be thrown back into question.

In such a case, we browse the sketch definitions that
have been defined earlier, and on which d2 depends.
We suggest to the user to reconsider some of the val-

(a)
1st
step

(b)
2nd
step

(c)
3rd
step

(d)
end
of
in-
ter-
pre-
ta-
tion

Figure 5: Interpretation in 3 steps, and final result

ues he had chosen for these previous sketch definitions.
First, we propose him to review only a few of them,
those that are placed closer in the tree. Then, pro-
gressively we put into consideration more definitions,
including those that were defined a longer time ago.

Our debugger-like tool
The method exposed above is implemented as a mod-
ule of YAMS, and the user has the choice to use it or
not, and to start it when he needs.

Practically talking, we draw the solution step by
step as the interpretation goes along. For each new
object drawn on the solution figure, the corresponding
part of the sketch is highlighted. This way, the user
can easily follow the construction process. At each
step, YAMS proposes a set of possible choices for the
current object to be drawn. When the user chooses
one, it is constructed on the figure and YAMS goes
on to the next step.

On Fig.5, we can see a step by step interpretation
of the constrained sketch of Fig.1. At each step ((a),
(b), or (c)), the user chooses one of the two available
results. The part of the figure that has already been
frozen is in thick, the chosen value is in thin, and the
value that was not accepted is in dashed line.

However, constructing a figure with this tool can be
a little tedious when the objects are voluminous and
the multifunctions numerous.

5 TOUCHING UP A SOLUTION

Another idea is to allow the user to revise a solution
that has already been completely constructed. We
can make a first interpretation using the freezing of a
branch technique, and then suggest other close solu-
tions if the user is not completely satisfied.

The process starts with a computed solution figure.
The user selects and moves with his mouse the element
of the figure that is not at the right place. The other
places we will propose for this element have to satisfy
the constraints. That’s why we use the construction
program to compute the possible positions. The user



can only move the selected element towards one of the
proposed solutions.

It may happen that the user wants to move one
element which is linked with some others because there
is a dependence between them. If so, the whole set of
linked elements will be moved altogether. So when the
user selects an element, we use the dependence graph
to find which elements are dependent on the selected
one, and they are all highlighted. That way, the user
can easily visualize the part of the figure that will be
modified.

On Fig.6(a), we can see a solution given for the
design of a rod. In this solution, the neck of the rod is
reversed, that’s why the user wishes to manipulate this
part of the figure. He selects the point represented by
a cross. Then, the part of the figure that is linked with
this point is displayed in thick lines. Fig.6(b) shows
the alternative point that is automatically proposed,
represented by a dashed cross. We suppose that the
user chose the other point by dragging p1 with the
mouse. The result is presented on Fig.6(c). Then the
user selects the arc that he wants to be above the neck.
The little circle with the same center has to move with
it, so both are thick. The alternative arc is dashed. If
the user chooses the alternative arc, we finally obtain
the result presented on Fig.6(d).
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(d)
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re-
sult

Figure 6: Manipulation of a solution for the example of
the rod

This method takes advantage of the structure of the
solution space. The tree of solutions allows us to eas-
ily find the other possible solutions for one element
by jumping from one branch to another. Note that it
needs the same hypothesis as the step by step inter-
pretation. The same topological sort has to be done
before, for identical reasons. Auxiliary definitions are
placed in the construction program only when they are
needed by a sketch definition, and not before. That
way, if we change of branching in a layer, we can go
on following the same numbering in the layers below
if they are not dependent on this layer.
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Figure 7: Impossibility to manipulate some points

However, we remain dependent on the construction
program. Indeed, in some cases, manipulating a fig-
ure may not be as intuitive as we wish. On Fig.7(a),
the user has drawn a simplified constrained sketch of
a house. He obviously wants the triangle represent-
ing the roof to be outside the square representing the
walls. Suppose that the solution figure given is the
one presented on Fig.7(b). He would intuitively want
to move p1 down. But in this configuration, with this
particular constraints, the solver provided a construc-
tion program that starts the construction with p1, so
p1 is situated on the top of the tree of solutions. So,
it is impossible to move this point, because no other
propositions can be done, see Fig.7(c). On the other
hand, he can move p2 down, as shown on Fig.7(d), in
order to obtain the figure presented on Fig.7(e), that
is what he requested.

6 CONCLUSION

In this paper, we first recalled our symbolic approach
of geometric constructions for CAD constraints solv-
ing. We explained that our prototype YAMS provides
a general construction program, that is afterwards nu-
merically interpreted. Then, we put forward the re-
maining problems that led us to find a way to easily
browse the tree of solutions.

We proposed two tools, used whether the pruning
method did not manage to find one unique solution
because of the presence of Boolean constraints, or the
user is not satisfied with the solution. We first pro-
posed a debugger-like tool that is based on the idea of
a step by step numerical interpretation. This mecha-
nism can be enhanced with several kinds of breakpoint
tools. It is possible to offer the opportunity to freeze
a part of a tree of solutions between two breakpoints,
and then to skip this part as if it was a big step. The
second tool, as a kind of “magnetic grid”, allows the
user to manipulate a solution, in order to move the
misplaced entities of the figure towards other posi-



tions that also verify the constraints. Further work
has still to be done to reduce the effects of its limi-
tations. Moreover, these tools are a first stage in the
conception of a series of intuitive exploration tools.
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