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Abstract—Path planning for surgical tools in minimally inva-
sive surgery is a multi-objective optimization problem consisting
in searching the best compromise between multiple placement
constraints to find an optimal insertion point for the tool. Many
works have been proposed to automate the decision-making pro-
cess. Most of them use an aggregative approach that transforms
the problem into a mono-objective problem. However, despite its
intuitiveness, this approach is known for its incapacity to find
all optimal solutions. After a previous clinical study in which we
pointed out the interest of introducing MOEAs to neurosurgery
[12], in this work, we aim at maximizing the range of optimal
solutions proposed to the surgeon. Our study compares three
different optimization approaches: an aggregative method using a
weighted sum of the multiple constraints, an evolutionary multi-
objective method, and an exhaustive dominance-based method
used as ground truth. For each approach, we extract the set
of all optimal insertion points based on dominance rules, and
analyze the common and differing solutions by comparing the
surfaces they cover. The experiments have been performed on
30 images datasets from patients who underwent a Deep Brain
Stimulation electrode implant in the brain. It can be observed
that the areas covered by the optimal insertion points obtained
by the three methods differ significantly. The obtained results
show that the traditional weighted sum approach is not sufficient
to find the totality of the optimal solutions. The Parteo-based
approaches provide extra solutions, but neither of them could
find the complete optimal solution space. Further works should
investigate either hybrid or extended methods such as adaptive
weighted sum, or hybrid visualization of the solutions in the GUI.

I. INTRODUCTION

Image-guided surgery has become very common in hospitals
nowadays. It has many advantages compared to open surgery
such as less skin and tissue trauma, less bleeding, less scarring,
and faster recovery with shorter hospital stay. However, its
major difficulties are the reduced visibility inside the patient’s
body, and the limited maneuvering of surgical tools. There-
fore, an efficient preoperative planning is a key element of
its success. More particularly, planning a safe and efficient
trajectory for a surgical tool on preoperative medical images
is a crucial and a challenging task which requires a long
experience. The path is usually chosen as the best compromise
between multiple surgical rules that can often be contradictory
such as for instance: accurate targeting, avoidance of vessels
or other sensitive structures, compliance with standards, short
path, etc.

Fig. 1: Deep Brain Stimulation

Most of the automatic trajectory planning techniques that
have been proposed in the literature in the past years are based
on mono-objective optimization approaches. They combine
all the surgical rules in a single aggregative cost function,
after assigning certain importance weights, and minimize it to
find an optimal solution strategy. This approach is intuitive,
and sounds close to the current decision making process.
However, the optimization community has shown that using
mono-criteria approaches for solving multi-criteria optimiza-
tion problems through aggregation of criteria can lead to an
under-detection of the optimal solutions in a given solution
space.

The purpose of this work is to better clarify and quantify
the impact of the capacity and limits of different optimiza-
tion approaches on the particular case of surgical trajectory
planning. We investigate three optimization approaches: an
aggregative method based on a weighted sum, an evolutionary
dominance based approach and a random search method with
dominance selection. We confront them on a use-case con-
sisting of planning an optimal trajectory for electrodes paths
in Deep Brain Stimulation (DBS), which is a neurosurgical
treatment destined to treat the movement disorders such as
Parkinson’s disease or essential tremors (illustration on Fig. 1).
For each method, we compute Pareto fronts among candidate
entry points, and analyze the surfaces covered by the optimal
solutions.

After reporting the closest works in Section II, we explain in
Section III the three approaches implemented in our work. In
Section IV, we describe the experimental setup. In Section V
we conclude the paper detailing the results and discussing
them, and compare the different methods.
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II. RELATED WORKS

The resolution of multiple placement rules for automatic
preoperative path planning of surgical tools has already been
addressed by many groups. However, most of the works in
the literature have adopted aggregative methods to solve this
multi-objective problem. For instance, authors of [2], [3],
[8], [11], [21] have all used a weighted sum to solve DBS
electrode placement, while authors of [1], [18] also used a
weighted sum to solve needle placement for needle placement
in the liver for instance for radiofrequency ablation (RFA)
of hepatic tumors. The choice of the weighted sum method
seems intuitive, as surgeons usually have a reasonable idea
of priorities between the rules and this approach enables
to associate weights to priorities and get the corresponding
solution instantly. However, this approach has some well-
known drawbacks that are well explained in [6], [14]: the
optimal solution distribution is often not uniform, and many
optimal solutions cannot be detected in non-convex regions.

If multi-criteria methods are already widely used for radia-
tion therapy planning [4], it’s only recently that a very small
number of groups have started to consider techniques based
on Pareto-optimality to solve multiple criteria for trajectory
planning in minimally invasive surgery. For example, a non-
dominance based optimization has been used in [19], [20] to
find a compromise between multiple clinical criteria for access
paths in RFA. The result of the planning has been represented
as a set of a few Pareto-optimal points that the surgeon could
select to have information on how they satisfy each rule. So
far, in this application field this kind of approach appears less
intuitive for the user who has to browse the solution space.
To our knowledge, multi-criteria approaches have not been
investigated for neurosurgical trajectory planning.

Even if the differences between multi-objective and ag-
gregative optimization methods are known, we wanted to
measure their impact and compare their extent over the surface
of candidate insertion points.

III. MATERIALS AND METHODS

In this section we introduce some basic definitions and
explain the three optimization approaches used in this study.

Strict dominance. We define dom the strict dominance
relationship between two individuals x and y of the solution
space S for a set of n objective functions fi as follows:

∀ x, y ∈ S
x dom y ⇐⇒ ∀i ∈ [1..n] , fi(x) < fi(y)

Pareto-optimal solution. A solution x is Pareto-optimal if it
is not dominated by any other solution in the solution space
S.

x ∈ S is Pareto optimal
⇐⇒ ∀ y ∈ S , ¬(y dom x)

Pareto front. The set of all Pareto-optimal solutions is called
a Pareto front F . Inside the front, no solution dominates
another.

x ∈ F ⇐⇒ ∀ y ∈ F ,
¬(y dom x) ∧ ¬(x dom y)

A. Method 1: an aggregative approach, the weighted sum

This method M1 is a mono-objective optimization method
based on the representation of all the objectives fi by a single
cost function f to minimize, expressed as a weighted sum of
all individual fi and their corresponding weighting factors wi

as in the following equation:

f =

n∑
i=1

wi.fi(x), x ∈ RN (1)

where: 0 < wi < 1 and Σwi = 1 (weights condition).
After that, a classical mono-criteria optimization technique is
applied, such as in our case the Nelder-Mead method [15],
to find an optimum. This method is straight-forward and can
always find a solution, but may prematurely converge to a local
optimum. This problem can be overcome, for instance by using
an initialization phase to start the optimization process close
to a known optimum, or close to j different optima to obtain
j most optimal solutions, as explained for instance in [11].

By varying weights wi, different entry points minimizing
the global objective function f can be obtained. By trying all,
or a high number of different combinations of parameters wi,
we can obtain all the possible optimal entry points that can
be found with this method, using an approach derived from
[10]. So far, we constitute a stochastic uniform sampling of the
weights parameters in such a way that for n objective function
fi, a sample contains nwi conforming to the mentioned
weights condition. A Dirichlet distribution [16] (see Fig. 2)
allows to obtain a uniform sampling of the parameters.

Fig. 2: Uniform sampling of combinations of wi using a
Dirichlet distribution

Let us denote S1 the set of optimal points corresponding to
all tested weights combinations. Its first Pareto front S1F1 ⊂
S1, i.e. the points of S1 that are not dominated by any other,
can be extracted from S1, and compared with the Pareto fronts
of the two other methods.

B. Method 2: a well known evolutionary approach: NSGA-II

Method M2 is a evolutionary multi-objective optimiza-
tion method based on a Pareto ranking scheme. The Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [7] has
been chosen as it is well suited for multi-objective continuous
problems, with a complexity of O(mn2), where m is the
number of objectives and n the population’s size, making it
usable in a reasonable time for our kind of application. If n is
really large, other algorithms such as ASREA or G-ASREA



[22], [23] have been devised that have an O(man) complexity
(where a is an archive of size 10m) and that can be massively
parallelized.

1) NSGA-II principle: the algorithm consists in two phases:
1. initialization phase: an initial population P0 of size N

is selected randomly from the initial solution space S. A
first offspring generation Q0 of size N is then created by a
tournament selection on P0 over the values of the m objective
functions fi, followed by crossover and mutation processes.

2. iterative phase: the population is evolved until reaching
a certain number of generations. For the tth generation, a
combined population Rt of size 2N is formed from the
current population Pt and the offspring generation Qt. Since
all the previous and current best individuals are added in the
population, elitism is ensured. Rt is then sorted based on non-
dominance and crowding-comparison approach which guides
the selection process at the various stages of the algorithm
toward a uniformly spread-out Pareto optimal front thanks
to a density-estimation metrics without need of a sharing
parameter. The new generation Pt+1 is filled by each front
subsequently until the population size exceeds N . If by adding
all the individuals in front Fj the population exceeds N then
individuals in front Fj are selected based on their crowding
distance in the descending order until the population size
becomes equal to N . The process is repeated until the desired
offspring generation is reached. Then the last population
becomes the set S2 of optimal points from method M2. See
[7] for a complete description of the algorithm.

2) NSGA-II setup: an initialization is done with a pop-
ulation size equals to 2000. Individuals are initialized ran-
domly over the surface of the solution space (Fig. 3a); and
the algorithm has been run run over 10 generations. After
that, a DBX Dominance Based Restricted selection [17] has
been used to choose the offspring individuals, followed by
a blend alpha recombination (BLX-α) [9] for the crossover
function. In BLX-α, an offspring c is generated by a random
linear recombination of the parents p1 and p2 as follows:
ck = (1 − γi)p1,k + γip2,k where γi = (1 + 2α)ui − α
with ui a random number between 0 and 1, and α = 0.5
in our experiments. The crossover probability has been set
to 0.9, with a crossover distribution index etac = 10. A
polynomial mutation function has been chosen for a child ck
and a parent pk as follows: ck = pk+(puk−plk)δk with puk , p

l
k

the upper and lower bounds for the parents, while δk is a small
random variation calculated via a polynomial distribution. The
mutation rate has been set to 0.5, with a mutation distribution
index etam equals to 5. Finally, the evaluation is performed
for the three objective functions described in IV-C.

C. Method 3: quasi-exhaustive dominance-based method

The third methodM3, based on a Monte-Carlo approach, is
considered as a ground truth for our experiments. It consists
in analyzing the dominance on a very large distribution of
randomly sampled points in the solution space. Let us denote
S3 the set of samples. We compute the Pareto front S3F1 ⊂
S3 according to the dominance rule described above. Fig. 3b

shows the dense sampling of the initial solution space. This
method has long computation times, making it unsuitable for
a clinical use despite its wide and extensive coverage of the
space of candidate entry points.

IV. DESCRIPTION OF THE EXPERIMENT

In this section we describe the experimental setup, tests
pipelines, and measures. Then we explain the use case and
the datasets on which tests in this study have been performed.
At last we illustrate quantitative information on charts, with
an illustrative snapshots and comments.

A. Experimental pipeline

The objective of the test was to compare the three methods
on their coverage over the surface of candidate entry points,
and their ability to find the maximal set of optimal solutions.

To this end, we have implemented a pipeline illustrated in
Fig. 4. Starting from the initial space of candidate entry points
S, it proceeds as follows:

Step 1: “Optimal sets”.
We compute S1 containing the 60.000 best solutions ob-

tained when running Nelder-Mead optimization M1. with
j = 3 for 20.000 times on different random combination of
weights. We compute S2 in M2 using NSGA-II according
to the settings described in III-B2. Finally we compute S3
containing a sample of 100.000 random entry points with the
quasi-exhaustive search method M3.

Step 2: “Pareto fronts”.
For S1, S2, and S3, we compute the first Pareto fronts,

respectively named S1F1, S2F1, and S3F1, according to
the dominance rule. These sets contain the non-dominated
solutions from their source sets.

Step 3: “Non-dominance test”.
In this step, we filter S1F1, S2F1, and S3F1 by eliminating

the points that are dominated by points found by another
method using a non-dominance (ND) test. By filtering front
SiF1 with points of front SjF1, we obtain the set NDij of
points of SiF1 that are not dominated by points of SjF1. In the
rest of the paper, we will call these points elite points of SiF1.
The results are six subsets named NDsets: {ND12,ND13} ⊂
S1F1 , {ND21,ND23} ⊂ S2F1, and {ND31,ND32} ⊂ S3F1.

Step 4: “Distance filter”.
Finally, we noticed that the NDij sets may contain solutions

which are very close in terms of locations (and therefore evalu-
ations). Thus, we added another filter keeping only the distinct
solutions, using an Euclidean distance metric. The result of the
filter is six subsets named NDCsets NDNCij ⊂ NDij , with
NDNCij containing points from SiF1 that are not dominated
by any point of SjF1 and that are not located close to a
point of SjF1(NDNC for Not Dominated Not Close). In other
words, NDNCij covers areas containing elite points found by
method Mi but no elite points found by method Mj . After
that the closest points have been clustered in order to highlight
the areas of the surface of candidate points where elite points
have been found by one method and not by another.



(a) S2 (b) S3

Fig. 3: Initial samplings for methods M2 and M3
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Fig. 4: Sets pipeline

B. Comparison of the three methods

The number of points in the Pareto fronts is not a good
indicator of the ability of a method to discover points where
other methods couldn’t, as it also strongly depends on the
location of the points and their density. We have chosen to
compare the coverage areas instead of the number of points.

We have first subdivided the triangular mesh representing
the surface of possible candidate entry points on the skin. The
level of subdivision has been chosen empirically. The triangles
need to be not too small otherwise they would be reduced to
the size of a single point and we have no benefit of using
surfaces instead of points, and not too large otherwise the
precision would be too low. The average size of a triangle has
been set to a maximum of 1 mm2.

For each set, we have located all the triangles containing at
least one of its points, and created a surface as the aggregation
of all the triangles. The areas of the created surfaces have been
computed.

C. Use-case and experimental data

To test and compare the three methods on the trajectory
planning procedure of a minimally invasive surgery, we have

chosen to use data of patients who underwent Deep Brain
Stimulation electrodes implantation. Deep Brain Stimulation
is a neurosurgical procedure intended to treat motion disor-
ders such as Parkinson’s disease. It consists in implanting
permanent electrodes in deep structures of the brain, and to
continuously stimulate them. The electrode trajectory planning
is submitted to a number of surgical rules, among which we
have chosen to study three of them as objective functions for
our experiment, that are described in more detail in [10].

• “ST”: Orientation of the electrode, computed as the
proximity to a standard trajectory (ST) defined by expert
neurosurgeons and commonly used in the commercial
platforms.

fST = angle(T,ST )
90

• “DS”: Distance from the electrode to vessels, computed
as the distance to the closest sulci.

fDS
=Max(DminS−dist(T,S)

DminS
, 0)

• “DV”: Distance from the electrode to ventricles.

fDV
=Max(DminV −dist(T,V )

DminV
, 0)

An illustration of these constraints is shown on Fig. 5.

electrode A

electrode B

Fig. 5: The structures of interest inside the brain: the target is
the small lense shape sturcture in orange, ventricles in blue,
and vessels embedded in the sulci in gray. Two candidate
electrode trajectories are illustrated: electrode A satisfies the
constraint ”ST” better than electrode B, while electrode B
satisfies ”DV” better than electrode A.



The tests have been performed on 30 retrospective datasets
of preoperative images of 15 patients issued from 2 different
hospitals, and who underwent bilateral DBS implant. All were
treated for Parkinson’s disease, and the target was the Sub-
thalamic Nucleus. The images consisted in 3T T1-weighted
MRI (1.0mm x 1.0mm x 1.0mm, Philips Medical Systems)
for Hospital 1, and 1.5T T1-weighted MRI (0.9373mm x
0.9375mm x 1.3mm, GE Medical systems) for Hospital 2.
The 3D brain model has been reconstructed using pyDBS [5]
pipeline. A model consists of triangular surface meshes of the
sulci, the ventricles, the subthalamic nucleus, and a skin patch
representing the initial solution space S. Experiments have
been performed on an Intel Core i7 running at 2.67 GHz with
8GB RAM workstation.

V. RESULTS AND DISCUSSION

The obtained results from the 30 cases are summarized
in the three charts of Fig. 10, 11, and 12, and illustrate the
quantitative information of the solution surfaces areas, while
the visual information of the insertion points location and their
coverage surfaces are illustrated by snapshots (Figs. 6 to 9) on
a single case #26.

Fig. 10 shows the areas covered by the Pareto fronts for
each of the three methods. As expected, the surfaces covered
by the reference method M3 are the largest. Among the two
optimization methods, M2 provides the largest coverage with
a mean of 85.23 mm2 compared to 51.75 mm2 for M1.
In Fig. 6 the three fronts are superimposed over the initial
solution space mesh (the zone of the scalp corresponding to
feasible entry points). It can be noticed that the solutions of
M1 andM2 are different, and they are more or less contained
in the solutions of M3. A zoom on the area of interest is
shown in Fig. 7 for each of the fronts separately. On Figs. 8a
and 8b, the solutions of M1F1 and M2F1 are superimposed
on the solutions of M3F1, allowing to compare visually the
coverage of M1 and M2 compared to method M3.

We can see in Fig. 11 the areas of the non-dominated
solution sets NDij surfaces for two methods at a time. It
can be noticed that the areas of solutions detected by M1

and M2 which are not dominated by solutions in M3 are
relatively small (see ND13 and ND23) since that M3 is a
quasi-exhaustive method and supposed to detect the maximum
number of solutions. Despite that, both M1 and M2 are able
to find a few solutions more interesting than M3 thanks to
the efficiency of optimization. When comparingM1 andM2,
we can observe that both methods could find elite points not
discovered by the other (see ND12 and ND21, both on Fig. 11
and Table I), with a small advantage for method M2. This
can also be observed on the snapshot of Fig.9a that displays
the coverage of ND12 over ND21.

The non-dominated non-close solutions sets (NDNC sets)
allow to highlight areas where some methods can propose
solutions and others do not. The large areas missed by methods
M1 and M2 can be visualize in Fig. 9b.

The most remarkable information is that the areas of elite
points found by M3 and not by M1 (corresponding to ND31

TABLE I: Mean coverage of the solution space by methods 1
and 2 compared to each other and to method 3

S1F1 S2F1 ND12 ND21 NDNC12 NDNC21area % of S3F1 area % of S3F1

AVG 51.75 28.35 85.23 44.96 51.68 84.79 6.84 32.53
STD 15.02 6.67 30.06 8.02 15.01 29.82 3.40 19.57

in Fig. 11) are very large, which emphasizes the fact that
the mono-objective weighted sum approach can miss a large
number of interesting solutions. The zones detected by M3

and not by M2 are smaller (ND32 in Fig. 11) since that M2

and M3 have close concepts. Table I summarizes coverage
for the comparison between M1 and M2.

Another important information is that none of the experi-
mented methods were able to find the totality of the solutions.
Significant areas are found by each of the methods and not
by the others. This is due to several factors. The quasi-
exhaustive method does not optimize the solutions and is
dependent on the random sorting, which make that it can
miss good solutions. The results of the weighted sum confirm
the well-know drawbacks of this method, that leads to an
inhomogeneous distribution of the solutions over the Pareto
front. Evolutionary methodM2 is a compromise between fast
computation time and number of tested points, and a better
coverage of the area would be at the price of a higher number
of points and longer computations.

The computation times are about 20 mn for method M1,
about 30 sec. for M2, and 5 mn for method M3. Even
if M3 is the one providing the best coverage, it is not
usable in a reasonable time compatible with clinical routine,
whereas method M1 can provide a single updatable result in
a few seconds. This is why we think that hybrid methods for
optimization or for display in GUI, or extensions of weighted
sum method [13] should be investigated.

Fig. 6: Overview of the surface of possible entry points, with
the three Pareto fronts: S1F1 in blue, S2F1 in red, S1F1 in
green



(a) S1F1 (b) S2F1 (c) S3F1

Fig. 7: Zoom on the Pareto fronts of M1 in blue, M2 in red, and M3 in green

(a) S1F1 points over S3F1 surface (b) S2F1 points over S3F1 surface

Fig. 8: Coverage of methods M1 and M2 compared to M3

(a) ND12 points over ND21 surface (b) NDC12 and NDC21

Fig. 9: Comparison between coverage by elite points of methods M1 and M2



Fig. 10: Surfaces areas of the Pareto fronts in the three methods

Fig. 11: The six non-dominated sets for each of the 30 datasets

Fig. 12: The six non-dominanated not-close sets for each of the 30 datasets



VI. DISCUSSION AND CONCLUSIONS

In surgical planning, most of the automatic trajectory plan-
ning techniques that have been proposed in the literature are
based on mono-objective optimization approaches that com-
bine different criteria through weighted sums. Unfortunately,
theory shows that such techniques cannot find concavities
in Pareto-fronts, meaning that some Pareto-optimal solutions
cannot be found. Based on experimental results on 30 real
patient-specific data, this paper shows that in practice, basic
Pareto based optimization methods such as NSGA-II can
indeed find more optimal solutions than the current state of
the art in weighted sums optimization algorithms, and hence
extending the range of the optimal solutions to surgeons.
NSGA-II was tested first because it is one of the most versatile
multi-objective dominance based algorithms. It can therefore
serve as a basis to explore the potential of such optimization
algorithms.

Future work will now consist in developing tailored algo-
rithms that will specialize on the specific problem of automatic
trajectory planning techniques. Finally, hybrid visualization of
the solutions in the GUI can also be enhanced to simplify the
surgeon task.
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