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Abstract— Deep Brain Stimulation is a neurosurgery proce-
dure consisting in implanting an electrode in a deep structure
of the brain. This intervention requires a preoperative planning
phase, with a millimetric accuracy, in which surgeons decide the
best placement of the electrode depending on a set of surgical
rules. However, brain tissues may deform during the surgery
because of the brain shift phenomenon, leading the electrode to
mistake the target, or moreover to damage a vital anatomical
structure. In this paper, we present a patient-specific automatic
planning approach for DBS procedures which accounts for
brain deformation. Our approach couples an optimization
algorithm with FEM based brain shift simulation. The system
was tested successfully on a patient-specific 3D model, and
was compared to a planning without considering brain shift.
The obtained results point out the importance of performing
planning in dynamic conditions.

I. INTRODUCTION

Deep Brain Stimulation (DBS) is a neurosurgery pro-
cedure used to treat a variety of neurological disorders,
most commonly Parkinson’s disease, dystonia, or essential
tremors. It consists in implanting an electrode in a precise
brain target, generally the subthalamic nucleus, to stimulate
it permanently. The stimulation is done via a neurostimulator,
implanted under the patient’s chest skin, that delivers elec-
trical impulses through an extension wire to metallic leads
located at the tip of the electrode.

The success of the intervention and the reduction of the
postoperative symptoms depend on an accurate placement of
the stimulating leads at the target location.

Moreover, a misplacement of the electrode may lead to
the stimulation of other structures causing side effects, or a
massive hemorrhage if the electrode meets a vessel.

Neurosurgeons use MRI and CT images to perform a rig-
orous preoperative planning: they identify and locate the tar-
get within the brain, and trace the trajectory of the electrode.
The trajectory planning is subjected to a set of surgical rules
to ensure both the safety of the patient and the effectiveness
of the procedure. In fact, this preoperative planning step is
time-consuming since it is still performed manually in most
DBS centers. During the surgery, a burr hole is drilled in
the patient’s skull, and when the skull and the dura mater
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are open, cerebrospinal fluid (CSF) may leak through the
hole leading to a brain deformation called brain shift. This
phenomenon, which is hard to accurately anticipate, can
effectively alter the desired results of the intervention. This
is due to the difference between the preoperative planning in
static condition where no deformation is considered, and the
intra-operative dynamic condition where the brain deforms.

In this paper, we address DBS planning in dynamic condi-
tions. We present a patient-specific method which proposes
automatically an optimized safe electrode trajectory for DBS
procedures and accounts for brain deformation.

II. RELATED WORKS

Several techniques can be adpoted for modeling the be-
haviour of brain tissue. A mass-spring-damper model is
used when fast computation is preferred to accuracy, for
instance for real-time interaction. For a precise planning, a
more accurate model is a better choice. It means a higher
computational time which can be acceptable, but needs to
remain compatible with clinical use.

Most of the physics-based brain deformation models are
based on FEM method, but differ from each other by the
choice of the constitutive equation. [10] use a linear constitu-
tive equation, while [12] introduced a non-linear hyperelastic
model. The law determines the tissue behaviour, but there
is no consensus about a constitutive equation unifying all
the applications, such as simulating deformation during a
car crash or a neurosurgery. Brain deformation models have
been widely used for training systems, registration of medical
images [10], or compensating brain shift [4], but not for the
preoperative planning of a surgery.

Due to the impossibility to predict CSF loss, [4] pre-
computed different brain deformations for possible input
parameters, but the goal was to update the different structures
position during the surgery which is not our case.

In DBS procedures, surgeons usually plan the interven-
tions manually based on MRI and CT images, with the
assistance of some interactive medical image visualization
workstations such as Medtronics StealthStation or Cranial-
Vault [6]. Despite their valuable assistance, the planning
process remains mentally difficult and time-consuming. In
the last decade, automatic planning solvers were introduced
in many works. Some approaches maximize the distance
between the trajectory and obstacle structures [3], [14],
whereas others take into account a larger variety of placement
rules classified into hard or soft constraints to optimize
the trajectory [2], [8], [15], and even to perform automatic
targeting [6], [11].



To the best of our knowledge, no study investigated DBS
automatic trajectory planning accounting for brain deforma-
tion. We propose a hybrid simulation/planning system to
address this problem.

III. METHODS

A. Brain model and brain shift simulation

1) Brain deformation: The brain is considered as a soft
body subject to the laws of continuum mechanics. One of
the numerical methods to solve the governing equations of
motion is the Finite Element Method (FEM). In this work,
we use P1 Lagrange tetrahedral elements.

As the brain shift process occurs at a very low velocity,
we consider the problem as quasi-static and only look for the
configuration of the brain at that equilibrium, disregarding
the dynamic transient effects. Finally, the discrete equation
to solve is

f(x) = 0 (1)

where x and f are respectively the position and the force
vectors on the nodes of the tetrahedral elements. Here, f is
a non-linear function of the position of the nodes x, and
represents the sum of the internal and external forces. In
order to solve this non-linear equation, we use the following
first-order linearization at each time step: f(x+dx) = f(x)+
K(x)dx where the Jacobian matrix K(x) = ∂f

∂x depends
on the nodes position. This matrix is called stiffness matrix
for the internal forces. The solution of Equation 1 is then
approximated with the first iteration of the Newton-Raphson
algorithm. The resulting equation is a linear system solved
with a Conjugate Gradient algorithm. This process is applied
iteratively until reaching equilibrium.

Regarding the application of the simulation, brain defor-
mation can be considered as small. This allows us to use
Hooke’s law to define the tissue behavior. It defines a linear
relationship between strain and stress. From this law, we
can write the local (relative to an element e) stiffness matrix
Ke =

∫
ve

Je
TDeJedV where ve is the volume of element e,

Je denotes a matrix providing strain-displacement relation-
ship and De stands for the strain-stress relationship. In our
case, with Hooke’s law, Je and De are constant. To handle
large displacements (while maintaining small deformation),
we use a co-rotational formulation [9], where the geometric
non-linearities are approximated with the rotation of the
element with respect to its initial configuration. With this
approach, the stiffness matrix Kr

e of the element e is defined
as Kr

e = Re
TKeRe where Re is the rotation matrix of

element e. Finally, the global matrix K is assembled from
the local element stiffness matrices Ke.

2) CSF model and boundary conditions:
a) Interaction with bony structures: When the brain

deforms and moves, it may collide the endocranium. Once
they have been detected, contacts are solved using Signorini’s
law 0 ≤ δ⊥λ ≥ 0. It establishes an orthogonal relationship
between the contact response force λ and the interpenetration
distance δ. We ensure the Signorini’s condition is fulfilled at
the end of each time step by adding a term of constraints in

Fig. 1: Illustration showing the components of the simulation

Equation 1: f(x) = HTλ where H is a matrix containing
the constraints directions and λ is Lagrange multipliers
containing the constraint force intensities. λ is unknown
and has to be computed. A linear complementary system
is obtained, and is solved using a Gauss-Seidel algorithm.
More details on the overall solving process are given in [7].

b) Cerebro-spinal fluid: The main cause of brain shift
is a loss of Cerebro-Spinal Fluid (CSF) surrounding the
brain. The density of CSF is similar to water (ρ = 1007
kg/m3). A loss of CSF leads to a change of pressure inside
the skull and causes a deformation of the brain. The action
of CSF on the brain is modeled with a hydrostatic pressure:

fCSF =

∫
Se

(
ρ g h+ p(z0)

)
dS (2)

where Se is the surface of a submerged element belonging
to the surface of the brain, g denotes the gravitational
acceleration, h stands for the height from a point to the fluid
surface, and p(z0) is the pressure of the point z0 located on
the fluid surface. Fig.1 illustrates the different components
into play in the simulation. The amount of brain shift is
controlled by the fluid level. With a loss of CSF the fluid
level, h, and the fluid forces decrease.

B. Trajectory planning

Our preoperative planning approach is based on a ge-
ometric constraint solving method in static conditions we
previously published in [8].

1) static environment: To implement a planning in static
conditions Es, we formalize the surgical rules into two
categories of geometric constraints: Hard constraints HC,
and soft constraints SC. While HC express strict rules
which must not be violated such as crossing a vessel, SC
express preferences such as keeping the trajectory as far as
possible from the ventricles. To solve HC, we extract from
the initial skin surface Ω0 the feasible insertion zone Ωs

which satisfies HC. This is done by eliminating from the
skin mesh the triangles that are invisible from the target.
Afterwards, we compute an optimal trajectory based on an
estimation of its quality in respect to SC. To this end,
we assign a cost function fi to each SC, and create a
main aggregative objective function f composed from all
SC. By minimizing f using a derivative-free optimization



technique we obtain an optimal trajectory (insertion point
and direction).

f =

∑n
i=1 wi.fi∑n
i=1 wi

(3)

In Eq. 3, weights wi reflect the importance of each surgical
rule relatively to the others and are determined by surgeons.

2) dynamic environment: In order to implement a plan-
ning in dynamic conditions Ed, we need to anticipate the
potential deformations caused by the brain shift phenomenon
ϕ. For now, it is not possible to determine preoperatively
the exact magnitude of a brain shift. It may vary from a
minimum level ϕ0 (corresponding to no brain shift) to a
maximum ϕmax (corresponding to full CFS loss through the
entry point). However, we can estimate ϕmax for a given
entry point. For this reason, our objective is to find a safe
trajectory whatever the brain shift intensity from ϕ0 to ϕmax

and including all possible intermediate levels ϕi.
While in Es the planning is performed on the initial static

model Ms, in Ed it is computed on several deformed models
Mdϕ computed as described in Section III-A using SOFA
biomechanical simulation framework [1]. We precompute a
range of simulations corresponding to levels ϕ0 to ϕmax and
store them as a patient-specific deformations database. We
access the simulations database during the planning process
using our planning plugin implemented in MITK [16].

Fig. 2: Schematic representation of the entry points (blue)
of the initial skin mesh Ω0 lying at the same height h and
likely to lead to the same possible maximal brain shift ϕmax.

Our method consists in two phases that compute:
• the feasible insertion zone in dynamic conditions Ωd

• the optimized trajectory in Ωd

To obtain Ωd we assign a height level h to each entry point
pi ∈ Ω0 (as illustrated in Fig.2). For each height h, we build
its corresponding deformed model Mdh by summing up all
the deformable models Mdϕ0 to Mdϕmax resulting from ϕ0

to ϕmax. After that, we check whether pi satisfies HC on
Mdh to add it to Ωd, otherwise we exclude it.

In a second step, we apply the Nelder-Mead optimization
method [13] over Ωd to find the best trajectory. At each
iteration, we propose a candidate trajectory τ , get the model
Mdh depending on the candidate entry point’s height h, and
evaluate f(τ) on Mdh. The iterations are stopped when the
improvement of f falls under a threshold ε, then τ is stored
as the optimal trajectory.

Fig. 3: Ω0 is the large rectangular patch, Ωs is a subset of
Ω0 and is the union of red and green shapes, and Ωd is a
subset of Ωs and is the green mesh.

IV. EXPERIMENTAL RESULTS

We tested our method on a dataset of preoperative MR
images of a real patient. The 3D brain model was recon-
structed using pyDBS [5] pipeline. The model consisted of
surface meshes of the sulci, the ventricles, the subthalamic
nucleus, and a skin patch. A volumetric model was built for
the simulation part. Blood vessels being difficult to segment
from MR images and knowing that they are embedded in the
sulci that are more visible, we considered that the sulci form
with the ventricles the anatomical structures to be avoided
as obstacles. The target of the stimulation was the center
of the subthalamic nucleus, and the initial solution space
was the skin patch. The number of elements in the model
was 83k, and the number of simulations in the patient-
specific deformations database file was 20. The mechanical
parameters were set to λ = 1291 Pa and µ = 1034 Pa
according to [10]. Experiments were performed on an Intel
Core i7 running at 2.67 GHz with 8GB RAM workstation.

Firstly, we compared both feasible insertion zones Ωs

and Ωd computed in Es and Ed respectively. The obtained
results are shown on Table I.

TABLE I: Insertion zones: sizes, computation times, and
coverage ratio.

Ω0 Ωs Ωd

# Triangles 67920 17408 7868

Comp. time (s) - 12 36

Ω0 coverage (%) 100 25.6 11.6

The values in Table I show that Ωd is smaller than
Ωs which was quite expected due to the larger number of
obstacles in Ed than in Es. The percentage of Ωd to Ωs is
equal to 45.2% which means that the feasible insertion zone
is reduced by 54.8%. A visual illustration of the coverage
ratio is shown on Fig.3. It can be also noticed that the
required time to build Ωd is around 36s which is three times
as much as the time required to build Ωs, but still keeps the
approach compatible with clinical use.



(a) Es, Ms: ωs on Ωs (b) Ed, Md: ωs on Ωd

Fig. 4: (a) distance map to the borders of Ωs, and (b) the
same distance map projected onto Ωd. Parts are cut even in
the initially safe (blue) zone.

Secondly, we compared the optimization results in both
Es and Ed. Table II shows the performance of Nelder-Mead
optimization algorithm in both Es and Ed. We report the
value of the evaluation of the objective cost function f which
we are minimizing, the distance between the optimized
computed trajectory and the obstacles (ventricles and sulci),
the number of iterations, and at last the convergence time.

TABLE II: Nelder-Mead performance in Es and Ed

Nelder-Mead Es Ed

eval(f ) [0, 1] 0.28 0.38

dist. from ventricles (mm) 11.87 7.39

dist. from sulci (mm) 5.13 3.12

# of iterations 31 21

time (s) 0.034 0.258

The values in Table II show that the optimization algorithm
used in Es could also converge in Ed, and find a trajectory
sufficiently safe for DBS interventions even in case of a
brain shift. The optimized trajectory in Ed was closer to
the obstacles than the one in Es but remains far enough
from them. Consequently, the best evaluation value in Ed

(0.38) was not as good as the best one in Es (0.28) but
can be considered as acceptable for clinical practice. The
optimization time is negligible in both cases and compatible
with a use in clinical routine. An interesting observation we
obtain is that the safest insertion regions in static conditions
shown as blue zones on Fig.4a can be withdrawn from the
set of safe trajectories in case of brain shift, as shown on
Fig.4b where some formerly blue parts are cropped.

V. CONCLUSION

We presented a novel approach for DBS automatic preop-
erative planning coupling physical simulations with geomet-
ric optimization to help the surgeon to anticipate a possible
deformation during the planning. We tested our system on a
patient-specific 3D model, with very promising results.

The obtained results illustrate the large variation of size
and shape of the safe insertion zones for DBS interventions
between the static and the dynamic conditions, as it was
shrunk of more than 50% when considering a possible brain

shift. This variation shows the interest of including the
brain shift prediction during the planning phase to remove
dangerous entry points that would not be detected otherwise.
Although avoiding a sum of deformations from no brain shift
to a maximum possible brain shift to anticipate a wide range
of possible levels of deformations causes a high restriction of
the safe insertion zone, we could still find in the remaining
insertion zone an optimized entry point which is safe and
efficient in a reasonable computation time.

Beyond this proof of feasibility, we are currently gather-
ing intraoperative images thanks to an O-arm R© system, to
validate the simulations and predictions.

Further works could be conducted on the system such as
improving the accuracy of the brain shift model by using
more complex deformation and fluid models, or investigating
and comparing different optimization techniques.
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