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Abstract

Pre-operative planning of percutaneous thermal ablations is a difficult but decisive
task for a safe and successful intervention. The purpose of our research is to assist
surgeons in preparing cryoablations with an automatic pre-operative path planning
algorithm able to propose a placement for multiple needles in 3D. The aim is to optimize
several surgical constraints while taking into account a precise computation of the frozen
area. Using an implementation of the precise estimation of the iceballs, this study
focuses on the optimization in an acceptable time of multiple probes positions with 6
degrees of freedom, regarding the constraint of optimal volumetric coverage of the tumor
by the combined necrosis. Pennes equation was used to solve the propagation of cold
within the tissues, and included in an objective function of the optimization process.
The propagation computation being time-consuming, six optimization algorithms from
the literature were experimented under different conditions and compared, in order
to reduce overall computation time while preserving precision. Some of them were
found suitable for the conditions of our cryosurgery planning. We conclude that this
combination of bioheat simulation and optimization can be appropriate for a use by
practitionners in acceptable conditions of time and precision.
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1 Introduction

Minimally invasive surgery has known an increasing interest in the past decades. The small
size of incisions is beneficial to patients by decreasing the discomfort as well as the time
required for recovery compared to conventional surgery, all with the same benefits. Percu-
taneous cryoablation is a good example, in which the cancerous tissue is frozen using one or
multiple needles. During this procedure, tissue temperature drops to -40� around needle
tip, which is lethal for cells included in the iceball volume. The final goal of cryotherapy
is the necrosis of cancerous cells while preserving surrounding healthy tissue and avoiding
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damages to vital anatomical structures. For this purpose, an accurate surgical planning
needs to be done beforehand by surgeons.

However, the non-invasive, real-time monitoring of three-dimensional isotherm surface
of this critical temperature within the tissue during cryosurgical procedures has remained a
challenge. Since temperature can be measured only at discrete points in the target region,
simulation of heat transfer is an extremely useful tool to estimate the real coverage for a
candidate probe placement. A number of models has been proposed to solve the bioheat
propagation equation in two and three dimensions.

An important parameter in cryosurgery planning is the optimal choice of cryoprobes
locations with specific shapes and dimensions. It is typically done in a trial-and-error task
to find the best configuration. Since the manufactured cryoprobes have been produced with
a limited set of active lengths and diameters, and freezing protocol is commonly fixed, other
cryosurgical parameters such as number of cryoprobes and cryoprobe placement are good
candidates for optimization and planning during the procedure.

The overall objective of our research is to provide the surgeon with an automatic pre-
operative path planning algorithm able to propose a placement for multiple needles in 3D,
taking into account several surgical constraints as well as a precise computation of the
frozen area. In this paper, we focus on the optimization of the tridimensionnal placement of
multiple iceballs around the tumor to cover it at best. We first explain the implementation
of the accurate simulation of the propagation of cold within the tissues. This simulation
being a time-consuming process, we compare several optimization approaches under different
conditions, to find the most suitable in terms of compromise between speed and accuracy,
to be able to propose to the surgeon a good positionning strategy in a reasonable time.

2 Context

2.1 Related works

The problem of cryosurgery optimization was first addressed by Keanini and Rubinsky [1]
using simplex method. The heat transfer equation was solved for a 3D domain with finite-
difference method. Authors optimized only the number of cryoprobes and their geometrical
dimensions (diameter and active length), but optimization of other parameters, such as
cryoprobe placement in the target tissue and their thermal protocol, seems to be more
practical. They used an idealized model and geometry for urethral warmer, prostate, blad-
der and rectum. In 2001 Baissalov et al. [2] studied simultaneous optimization of cryoprobe
placement and thermal simulation using a gradient descent algorithm called L-BFGS-B
method. They described a 3D solution based on the cumulative 2D transverse planes, but
the shown results were only for 2D state in a prostate model.

Tanaka and Rubin [3] used a mechanical based method to solve the problem of cryoprobe
optimization in two phases. Phase I called bubble-packing starts with generating ellipsoidal
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elements (or bubbles) inside planning domain, then van der Waals’-like forces are simulated
to move these bubbles until a minimum-force configuration is found. A single bioheat
simulation is executed at the end of Phase I. The simulation is terminated at the point at
which a minimum defect region is found for that particular layout. In phase II, a bioheat
equation is solved and a new set of forces on the cryoprobes are computed based on the
defect region and one or more cryoprobes are moved accordingly. This survey was done in
2D for the prostate while in 2008, the same team extended their work to 3D [4] but just for
bubble packing method.

Giovanni et al. [5] used Ants Colony (ACO) to choose the optimal parameter config-
urations. Computation of the cost function is based on the numerical solution of several
direct Stefan problems solved by a Euler-Galerkin approach. This method combines a finite
difference approximation of the time-derivative and a finite element approach solving the
space-dependent part of the differential problem. This study was done on a 2D standard
prostate phantom.

2.2 Problem statement

As mentioned above all previous studies were done for prostate cryosurgery in which needles
are placed in the same direction and consequently number of optimization variables is
reduced. In this paper the first goal is to deal with a general case in which planning
domain could be 3D and needles have 6 degrees of freedom: 3 translations for position and
3 rotations for orientation.

Previous studies have computed bioheat propagation in order to have a more realistic
simulation of cryosurgery procedure. Bioheat propagation in the tissue is affected by needle
parameters, time and surrounding tissues. An interesting source of bioheat is the flowing
blood within large adjacent vessels which can cause a ”heat sink” effect and may prevent
temperature from decreasing to lethal levels. This may result in inadequate ablation, thus
increasing the risk of tumor recurrence in this region. Our second objective is to consider
surrounding tissues which have an important role in forming the final frozen region inside
the bioheat equation computation.

Our problem of simultaneous optimization of thermal protocol and cryoprobe placement
requires handling a large number of bound constrained optimization variables and ability
to minimize an objective function that cannot be expressed analytically in terms of the
optimization variables.

High computational cost of bioheat equation in each iteration requires a fast converging
optimization method for real time purposes. Optimization algorithms have been studied in
the literature to find the most suitable ones in terms of convergence and computational time
while avoiding local minima. Among the optimization techniques, we experimented various
techniques in order to compare them in the conditions of our problem: local optimization
methods such as Generating Set Search(GSS), and global optimization methods such as
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Genetic Algorithm(GA), Simulated Annealing(SA), Multilevel Coordinate Search (MCS),
Surrogate Modeling (SM) and evolutionary strategy (ES) were tested. Our final goal is to
optimize trajectories positions quickly and precisely, while taking into account a realistic
simulation of the formation of iceballs.

3 Material and Method

3.1 Numerical computation of the bioheat transfer within the tissues

The thermal distribution outcome of the cryosurgical procedure is predicted using multi-
probe thermal simulations. Results of the simulations are quantified in terms of isotherm
locations at any given time with respect to anatomy and the value of the objective func-
tion in the optimization scheme. These tools provide a means of assessing effectiveness
of the treatment. Our method consists of a time-dependent model of iceball formation
based on bioheat transfer equation around the needle tip, taking into account major vessels
surrounding the frozen area that influence the freezing process. Most of the theoretical
analysis on heat transfer in living tissue are originated from the Pennes equation [6], which
describes the influence of blood flow on the temperature distribution in the tissue in terms
of volumetrically distributed heat sinks or sources.

This uniform energy equation for biological tissue which can be applied to frozen, par-
tially frozen and unfrozen tissue regions, can be written as:

C̃
∂T (X, t)

∂t
= ∇.k̃∇[T (X, t)]− ω̃bCbT (X, t) + Q̃m + Cbω̃bTa X ∈ Ω(t) (1)

where C̃ is the effective heat capacity; k̃(T ) is the effective thermal conductivity; Q̃m is the
effective metabolic heat generation; w̃b(T ) is the effective blood perfusion; Ta is the arterial
temperature; Cb is the heat capacity of blood; X contains the Cartesian coordinates x,
y , and z; T (X, t) is the temperature of tissue; Ω(t) denotes the domain at time t. The
description and derivation of this coefficients in different states are omitted here for brevity.
A finite difference algorithm is applied to solve this complex problem with phase change
heat transfer in biological tissues. Applying this formulation to Eq 1 and using the following
relation to express the linear term T (X, t) on the right side of Eq 1,

T (X, t) = βT (X, t+ ∆t) + (1− β)T (X, t) (2)

where β is a relaxation factor, and 0 ≤ β ≤ 1, Eq 1 can be discretized as follows:

T (X, t+ ∆t) =
1−W (1− β)∆t−m.Fo

1 +Wβ∆t
T (X, t) +Σ

m
2
i=1

Fo

1 +Wβ∆t
T (X + ∆xi, t)

+Σ
m
2
i=1

Fo

1 +Wβ∆t
T (X −∆xi, t) +

(Q̃m + ω̃bCbTa)∆t

1 +Wβ∆t

(3)
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where ∆t is the time increment; W = ω̃bCb/C̃, and Fo = k̃.∆t/C̃.∆x2 is the Fourier
number; m = 2, 4, 6 correspond to the cases of one, two and three dimensions respectively,
and in order to avoid numerical instability, the space and time steps are limited by 1 −
W (1−β)∆t−m.Fo > 0. Applying the boundary conditions at time t+∆t and substituting
the calculated results at the previous time t, the unknown T at time t + ∆t can be solved
from the above equation.

The tissue domain is prescribed in a rectangular geometry with 7× 7× 7 cm in the x,
y and z directions respectively, in which x denotes the tissue depth from the skin surface
while y and z are along the surface. The boundary conditions at the probe surface are
prescribed respectively according to probe tip and probe shank as: T = −196� at probe
tip; ∂T/∂n = 0 at probe shank. The initial temperature in tissue is simplified as T0 = 37�.
In calculations, the grid resolution is ∆x = ∆y = ∆z = 1mm and ∆t = 0.1s. Q̃m = 0 in a
highly vascularized tissue like liver and w̃b = 0.005.

Our routine is described as below:

1. The location of liver, tumor, skin and vessels are determined thanks to a segmentation
process performed on the images. In this step, a 3D mesh for each anatomical structure
are reconstructed. All vessels are considered as fixed sources of heat at 37�

2. The shape of needle tip has been designed to fit real cryoprobes

3. Needle tip is placed at an initial position and orientation inside the tumor manually
or by the optimization method

4. The simulation procedure imitates a standard cryoablation pattern that consists of
two 10 minutes freezing intervals and one 5 minutes thawing step in between, which is
congruent with needle manufacturer calibration data in a tissue-like gel, which from
now on we call reference data

5. The iceballs are obtained by a 3D reconstruction of the −40� isotherm surfaces. The
selected value was chosen according to surgeons needs, as this temperature is used as
a threshold to determine the resulting necrosis volume

3.2 Optimization of the probes placement in 3D

The optimization process allows to refine the number and placement of the needles (3
translations and 3 rotations for each) to minimize a defect function. It is based on an
iterative procedure including the bioheat equation resolution at each step. Every resolution
begins with the assumption that the placement of cryoprobes is given with a fixed tip
temperature of −196� while the initial temperature of tumor and background tissue is
37�. Then, the bioheat equation can be solved. The resulting temperature field is processed
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to evaluate the defect function providing a quantitative estimate of the mismatch between
the frozen tissue and the target tissue. Eq.4 shows the definition of the cost function.

More formally, a specific configuration of the cryosurgery design is represented by a
state variable U , which is a list of N operating parameters (position of cryoprobes) whose
admissible values are contained in S ⊂ RN . The cost function is the defect weighting
function F : S → N such that:

F (θU ) =

∫
V
µ(θU (x))dx, (4)

where θU is the temperature distribution associated to U and

µ(θ(x)) =


0 if θ(x) < θ̃ and x is diseased,

1 if θ(x) < θ̃ and x is healthy,

1 if θ(x) ≥ θ̃ and x is diseased,

0 if θ(x) ≥ θ̃ and x is healthy,

(5)

Figure 1: Schematic representation of the defect region. Tumor is in dark grey, and inter-
acting iceballs is in light grey. Not damaged tumor parts are striped and damaged healthy
tissue is in very light grey.

A schematic view of this function is demonstrated in Fig.1. Optimization algorithms
use this objective function and yield the new positions of cryoprobes in order that the next
step can begin. The procedure stops when further correction of the position of cryoprobes
becomes negligible or the predefined maximum number of iterations is reached.

Conventional optimization techniques typically require multiple evaluations of the cost
function for each iteration. For example, gradient based algorithms would require multiple
function evaluations to compute the gradients [7]. Keanini and Rubinsky [1] stated that
methods which compute explicit derivatives are likely to be inefficient. Our work employs
techniques that avoid calculating derivatives so as to minimize the number of simulations.
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As mentioned above our optimization algorithm should be capable of handling a large
number of bound constrained optimization variables and be able to minimize an objective
function that cannot be expressed analytically in terms of the optimization variables. Keep-
ing these parameters in mind, a bound constrained derivative free optimization method
which do not stuck in local minima (global optimization) with low number of iterations
would be suitable. Our problem is a convex optimization problem because of cubic search
domain surrounding the target region.

Derivative free optimization methods are classified to local and global optimization
methods as well as as deterministic, model based and stochastic methods[8]. Six optimiza-
tion methods were selected based on the parameters just mentioned in order to compare
their strengths and weaknesses to our problem.

� Local methods:

– Deterministic:

Pattern search: Generating Set Search (GSS) method was selected between
different pattern search methods. Each iteration of GSS method consists of two
basic steps. The search step is performed first over a finite set of search direc-
tions HK generated by some, possibly heuristic, strategy that aims to improve
the current iterate but may not guarantee convergence. If the search step fails
to produce a better point, GSS method continues with the poll step, which is
associated with a generating set that spans positively Rn Generating sets are
usually positive bases, with a cardinality between n+1 to 2n [9].

� Global methods:

– Deterministic:

Multilevel coordinate search (MCS): It partitions the search space into
boxes and in each iteration a label is assigned to each box based on the number
of times it has been splitted. MCS selects boxes with the lowest objective value
for each level value and marks them as candidates for splitting and will converge
when the maximum number of s is reached [10].

– Model based:

Surrogate Modelling (SM): Building a model of objective functions in our
search domain allows us to optimize a function with less number of iterations. In
order to build such a model, one should starts with sampling the search domain
and construct an initial surrogate model. Then optimizers are used to converge
the model, evaluate the best point and update the surrogate model. For this
purpose we have employed a mixture of radial basis functions [11] and kriging
[12] interpolations for our surrogate model. Radial basis functions approximate
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f by considering an interpolating model based on radial functions and kriging
models a deterministic response as the realization of a stochastic process by
means of a kriging basis function.

– Stochastic:

Simulated Annealing (SA): At iteration k, simulated annealing generates a
new trial point x̂ that is compared to the incumbent xk and accepted with a
probability function [13].

P (x̂|xk) =

{
exp[f(x̂)−f(xk)

Tk
] if f(x̂) < f(xk)

1 if f(x̂) < f(xk)
(6)

Genetic algorithms (GA): This method introduced by Holland [14] resembles
natural selection and reproduction processes governed by rules that assure the
survival of the fittest in large populations. Individuals (points) are associated
with identity genes that define a fitness measure (objective function value). A
set of individuals form a population, which adapts and mutates following prob-
abilistic rules that utilize the fitness function.

Evolution Strategies (ES): This method belongs to the class of Evolutionary
Algorithms (EAs) which use mutation, recombination, and selection applied to
a population of individuals containing candidate solutions in order to evolve
iteratively better and better solutions.

3.3 Experiment design

Our experiments were done on two patient models from the 3D-IRCADb database. They
are reconstructed images of liver tumors surrounded by vessels and normal liver tissue. To
test different conditions, we chose a case with a small tumor and another with a large one.

For the tests we experimented several parameters, each time changing one parameter
while others were fixed. Optimization methods, number of needles and size of the tumors
were selected as different experimental designs. Six optimization methods were considered
as mentioned in the previous section. In order to compute defect volume, the bioheat
equation was solved in each iteration and then objective function value was computed by
comparing temperature of each point in the tissue domain.

Comparisons for speed and convergence of the optimization methods are based on the
solution profile of each optimizer for few iterations to large ones. We tried to check the
sensitivity of each optimizer to other parameters like tumor size and number of electrodes.
Tumor size will affect complexity of the problem by extending or shrinking the search domain
and number of needles will modify the optimization input variables. In order to have a fair
comparison, four different experimental designs are selected, two for small tumor and two
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for large ones. In each state there are two possibilities of choosing 3 or 5 needles. All solvers
had a maximum of 500 iterations.

The type of croyprobe we modeled was a PERC-24 from Endocare. The theoretical
volume of iceball (-40� isotherm surface) of this cryoprobe type, given by the manufacturer,
is 2.4x2.4x4cm. Ratio between theoretical single iceball volume and tumor volume allows
to select the right initial number of needles. We experimented our optimizations on two
tumor sizes, small and large. This ratio is 0.7 for small and 0.2 for large tumor, with the
chosen cryoprobe type. In order to destroy tumors, it is intuitive to start with a number of
needles providing a total iceballs volume at least equal to the tumor volume.

4 Results and discussion

An example of the computation of an iceball produced by 3 needles around the small tumor
is shown on Fig.2. Fig.3 shows the trends of defect volume versus iteration number in
different conditions: small / large tumors and 3 / 5 needles. Optimization time lapse is
directly related to the number of iterations for all optimizers except surrogate modeling.
The most time consuming part of optimization process is the solution of bioheat equation
which is computed once per iteration. It takes 5 seconds with spatial dimensions mentioned
above on a machine using Intel core i7 3.4 to simulate a 10 minutes cryoablation treatment.

Covering the whole tumor with a minimum number of needles demands a lot of iterations
for the optimizer to reach a global minimum. Moreover, adding extra needles will increase
the number of optimization variables and consequently the risks of increasing healthy tissue
region which is damaged, but an optimum number of needles for any size of tumor should
be found. This trend is visible in the results shown in Fig.3 top for a small tumor in which
the total percentage of defect volume increased by growing the number of needles. Also in
Fig.3 bottom, total defect volume for a large tumor decreased by an increase in number

Figure 2: Example of aggregated iceball (left) after a heat propagation simulation for the
small tumor (right) and 3 needles. This configuration is not completely optimal as a part
of the tumor is outside the iceball.
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Figure 3: Trend of 6 optimizers for the case of small (top) and large (bottom) tumor are
shown above for 3 and 5 needles. Vertical axis shows percentage of defect volume while
horizontal axis shows number of iteration for a maximum of 500 iterations

of cryoprobes. Due to the low ratio of iceball volume to tumor volume and large size of
the tumor, even with 5 needles we did not find a global minimum within 500 iterations.
Increasing number of iterations or number of needles seems to be the first intuitive solutions
but due to the computational time for bioheat equation we did not consider them, pursuing
our goal to integrate selected methods in our existing planning tool which should converge
in the order of minutes for real-time applications.

In speed comparison of each experimental design we are interested to see which method
had the minimum of defect volume in its first one hundred iterations. By choosing this
criteria and looking into Fig.3 top left graph, GSS local method is prior to others. In this
design, thanks to large ratio of iceball volume to tumor volume and less low number of
needles, we are facing a simple problem which can be solved easily by a local deterministic
solver. Other solvers had more or less the same speed in this scenario. On the right graph,
by increasing tumor size both deterministic methods decrease their performance especially
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for the GSS method but for other solvers speed of optimization was not affected by changing
the search domain. The same characteristic is shown in Fig.3 bottom for large tumor.

For the accuracy comparison we looked for the method which finds the lowest defect
volume regardless of number of iterations. In general evolutionary methods had better
flexibility than heuristic methods like MCS and GSS. Simulated annealing did rapid con-
vergence among global methods but it is dependent on its initial point therefore the results
are not always good with different initial point and tumor shapes. MCS had more or less
good results in long iterations regardless of problem complexity due to its global design.
SM had the same performance of speed and accuracy comparing to simulated annealing but
it was more robust due to changing conditions and tumor shapes. Surrogate modeling also
demonstrated better results for complex problems as Fig.3 on the right which is the most
complicated among our designs. The strength of this approach lies in the generality of its
formulation since SM is independent of the physical interpretation and from the number of
the parameters subjected to optimization. In other words, through SM, one is able to set
different kinds of free planning parameters without changing the optimization technique.

5 Conclusion and future works

In this study, we compared six derivative free optimization methods. The speed and accu-
racy of each method was investigated due to number of needles and tumor size. Generating
Set Search was selected as fastest for simple problems and Surrogate Modeling as the most
robust in complex ones. We have demonstrated our tests by solving bioheat equation inside
the optimization process for a 3D cryosurgical planning of two tumor sets of small and
large size. Objective function was defined based on the defect volume value and did not
consider its shape. We believe that taking into account the shape of objective function will
lead to higher precision and lower number of iterations in future works. In order to solve
the mentioned convergence problem for large tumors in an acceptable time we are thinking
about experimenting smarter routines like supervised methods or multi stage optimization.
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