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ABSTRACT

A common treatment option for pharmacoresistant epilepsy is to surgically remove
epileptogenic zone. Stereoelectroencephalography is a minimally invasive surgical
procedure used to identify such zones. Precisely determining positions of all of im-
planted SEEG electrodes is crucial to design a resection plan. Metallic electrode
contacts produce strong artefacts in CT scans which makes localisation process dif-
ficult and imprecise. We propose an automatic approach for accurate localisation of
SEEG electrode contacts, using a combination of a 2D and 3D U-Net architecture.
The proposed hybrid network makes the best out of both models and makes more
accurate predictions, resulting in a decrease of false positive and false negative seg-
mentations. The network was trained on 36 datasets and evaluated on four different
metrics. The Hybrid model outperformed both the 2D and the 3D U-Net model.
To complete the electrode segmentation process, segmented contacts are linked into
electrodes using Gaussian Mixture Models.
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1. Introduction

Epilepsy is a chronic neurological disease that affects around 50 million people in
the world. Over 30% of the patients are resistant to current antiepileptic drugs. For
patients with pharmacoresistant focal epilepsy of structural etiology (Scheffer et al.
2017), surgically removing the epileptogenic zone may be an appropriate treatment
option. A successful resection relies on a precise identification of such zones and is
usually achieved through Stereoelectroencephalography (SEEG)(Talairach and Ban-
caud 1966). During a SEEG procedure, between 10 and 18 depth electrodes are placed
in targeted brain areas to record neuronal activity through metallic contacts evenly
spaced along their body. The recording of SEEG signals and spatial association with
the contact location allows for the detection of the spatial and temporal organization
of the epileptic seizure (Minotti et al. 2018), its starting point, and helps define the
zone to resect. In current practice, identifying the exact location of up to 300 metallic
contacts is performed manually by neurosurgeons. The presence of metal in electrode
contacts produces strong streak artefacts in the CT images, which interfere with the
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localisation process, making it highly prone to human error and inaccuracy.

In order to save valuable time and increase the effectiveness of the upcoming surgi-
cal procedure, several groups have been working to automate this procedure (Meesters
et al. 2015; Narizzano et al. 2017; Granados et al. 2018; Benadi et al. 2018; Medina Vil-
lalon et al. 2018; Pantovic et al. 2022a). Narizzano et al. suggested an approach based
on a geometrical-constrained search. Meesters et al. extracted guiding screws with
a multi-scale filter and determined the possible tip locations inside a wedge-shaped
region. This method did not take into account electrode bending, assuming rigid elec-
trodes. Granados et al. suggested a method aiming for an automatic segmentation of
both bolts and contacts. Their contact search strategy was based on the direction of
the bolt, given the distance and angle constraints. The proposed method, however,
needs manual adjustments to handle electrodes crossing. All of these methods use co-
registered post-implantation CT scans with pre-implantation MRI and hence rely on
pre-operative plans. Benadi et al. developed two interactive and an automatic method
carried out using the 3D Slicer platform with post-operative CT scans. The automatic
method does not take into account electrode bending and inaccurately segments con-
tacts that are surrounded by metallic artefacts. Medina Villalon et al. introduced an
automatic approach for electrode segmentation. First extra-cerebral elements from CT
scans are removed. The electrodes are segmented using a threshold found from the his-
togram of grey values, assuming electrode intensity values significantly greater than
those of brain structures. They encounter issues with false positive and false negative
segmented contacts which are overcome by calculating the median distance between
consecutive contacts and using it to add or delete missing or oversegmented contacts.

In a previous work, we proposed to take advantage of deep learning to automatically
segment electrode contacts. Two approaches were introduced respectively based on a
2D and a 3D U-Net (Pantovic et al. 2022a), where post-implantation CT scans showing
the SEEG electrodes were used for network training. Both networks proved to be highly
accurate to segment the most visible electrode contacts. However, the 2D model failed
to distinguish contacts from the metallic artefacts when two electrodes were positioned
close to one another, while the 3D model failed to detect edge contacts lying close to
the skull bone. Yet the two models seemed to complement each other, each one seeming
able to deal better with the issues of the other. Inspired by Isensee et al. who used
an ensemble of U-Net inspired architectures for segmentation of cardiac structures
(Isensee et al. 2018), this paper presents an approach combining a 2D and a 3D U-
Net model into a unique hybrid network to make the most of their advantages and
overcome their respective limitations. Segmented contacts are grouped together into
their corresponding electrodes using Gaussian mixture models. The proposed approach
is, up to our knowledge, the first solution to automatically and accurately segment
SEEG electrode contacts, robust to electrode bending and electrodes crossing, not
requiring prior information about electrode type and linking the segmented instances
into corresponding electrodes.

In a previous work, we proposed an approach to generate synthetic training data for
SEEG electrode contact segmentation (Pantovic et al. 2022b). Training a 2D U-Net
model on an augmented dataset that contains synthetic images generated following the
proposed method accounts for better final segmentation results. However, it seems that
such data might not be well suited for 3D models as the 3D U-Net performed poorly
when trained on synthetic data and gave less accurate results than when such data
were omitted. This can be explained by poor quality of real data along z-axis, whereas
synthetic volumes have high resolution along all three axes. As a result, the proposed
Hybrid model performed better when trained without any additional synthetic data.



2. Methods

2.1. Dataset

The initial dataset consisting of post-SEEG CT scans from 18 pharmacoresistant
epilepsy patients was obtained at Strasbourg University Hospital, each containing
between 192 and 259 CT slices of resolution 512 x 512 in DICOM format. As bor-
der pixels of each slice capture only background pixels, all slices were cropped to the
dimension of 400 x 400 to reduce memory usage. Electrode contacts were labeled man-
ually using 3D Slicer (Kikinis et al. 2014) and its segmentation tools. The number of
annotated contacts and the total number of electrodes annotated was compared to the
planning document to assure a high accuracy of the manual segmentation.

To enlarge the dataset, random rotation and flipping were performed on the orig-
inal CT images. Each patient’s volume was used to create one augmented volume.
Annotations were transformed accordingly. The final dataset consisted of 36 volumes,
accounting for a total of 8278 images.

2.2. Electrode contact segmentation

To segment SEEG contacts from the post-implantation CT scans, we have imple-
mented and combined a 2D and a 3D version of the commonly used U-Net (Ron-
neberger et al. 2015; Cicek et al. 2016) neural network architecture. The two networks
are first run separately, then their results are combined to generate the final prediction,
as described below. The task at hand was formulated as an instance segmentation prob-
lem due to a small size of electrode contacts, inaccurate manual ground truth masks
due to the surrounding metal artefacts and the aim to explore which brain zones were
reached with each electrode contact, rather than evaluating the prediction for each
individual pixel.

2.2.1. U-Net architecture

The U-Net encoder-decoder neural network architecture was chosen for the task due
to its outstanding performance in medical image segmentation (Ronneberger et al.
2015). The network consists of a contracting path and an expansive path. The former
represents a general convolutional process and consists of the repeated application of
two 3 x 3 convolutions for the 2D model and two 3 x 3 x 3 convolutions for the 3D model,
followed by ReLLU activation and batch normalization. 2x 2 (or 2 x2x2) Max pooling is
applied to reduce spatial dimensions and provides high resolution features. The latter
represents the expansive path which is built by feature map upsampling, followed by
a2 x2 (or2x2x2) transpose convolution, halving the number of feature channels
and a concatenation with the cropped feature map from the contracting path. The
cropping is performed due to the loss of border pixels in each convolution, while the
skip connections between layers enable context information and precise localization.
Finally, a 1 x 1 (or 1 x 1 x 1) convolution is applied followed by softmax activation
function, after which each pixel (voxel) is assigned a probability of it belonging to an
electrode contact.

Both the 2D and 3D models were trained on the same dataset, with the difference
being in the input data format.
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Figure 1.: Simplified illustration of overlapping patches. Numbers represent the number
of pixels along the z-axis. The white part of a patch represents output scores which
are discarded from the corresponding patch.

2.2.2. 2D Model

For the 2D network, the data were organised as 8278 independent images of dimension
400 x 400 viewed from the axial plane which were fed into the network.

2.2.3. 3D Model

For the 3D U-Net, volumes were formed by grouping CT slices by patient. To fit
the data into the GPU RAM memory, the network had to be trained on smaller
patches. For this reason, each volume was subdivided into overlapping patches of
dimension 144 x 144 x 135. The overlapping step on the x and y axes accounted for
16 pixels, while the overlap on the z axis varied depending on each patient’s total
number of slices, always fitting 2 patch-depths along the z axis. The patch overlap
was introduced to fully exploit the neighboring information of each voxel. The same
overlapping technique was used for predictions. As the overlapping pixels were assigned
multiple values, for them, prediction for the patch where that pixel belongs to the inner
half of the overlap was kept. For better understanding, 2D illustration of this process
on 3 consecutive overlapping patches is given in Fig.1, while in practice the same logic
was applied along all 3 axes. In Fig.1, the white parts of a patch represent discarded
predictions within that patch, while the colored parts of the overlap are the predictions
that are kept from the patch of that color. Final output predictions were re-sampled
to the original voxel resolution of the initial volume.

2.2.4. Networks configuration

Both models were trained in equivalent hyper parameter setups. Adam optimiser was
used with the initial learning rate 1 % 1072, £ = 0.9, B2 = 0.999,¢ = 1 * 108 and the
learning decay of 1.99 * 10~7, used to help fine-tune the network. The loss function
was binary crossentropy. Batch size for the 2D U-Net was 10, while for the 3D U-
Net, due to memory constraints, batch size was set to 2. The networks were trained
for 150 epochs (determined empirically) and cross-validated using the ‘leave-one-out’
approach: for each training phase one original volume and its augmented counterpart
were left out for testing so that the testing is done on an unseen case. Each training
phase was done, for both networks, using the remaining 17 original and 17 augmented
patient data, from which 10% served for validation.
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Figure 2.: Hybrid U-Net pipeline

2.2.5. Hybrid U-Net

To obtain the final predictions, the output predictions of the 3D network were first
rebuilt to the original voxel resolution of the initial volume. Then, they were averaged
with the softmax output probabilities of the 2D model. Finally, all of the voxels with
a probability lower or equal to 50% of belonging to an electrode contact were rounded
to 0 and labeled as background, while the rest were classified as electrode contacts
and rounded to 1. An illustration of the overall pipeline is shown in Fig.2.

2.3. Electrode contact clustering

To group segmented electrode contacts into the corresponding electrodes, Gaussian
mixture model (GMM) clustering algorithm has been implemented, assuming that
all the data points were generated from a mixture of a number of Gaussian distri-
butions, m, equal to the number of implanted electrodes, with unknown parameters.
The method used to initialize the weights, the means and the precisions was k-means.
With the number of initialisations set to 100 and maximum number of iterations set
to 1000, the GMM algorithm takes as input number of electrodes, m, and assigns each
segmented electrode contact to one of the m clusters.

To ensure that any possible false positive segmented contacts, lying further away
from the electrodes, are not interfering with the clustering algorithm, such contacts are
filtered out beforehand based on a fixed threshold distance from the nearest connected
component.

3. Experimental Setup and Evaluation Metrics

Network training was performed on 4 NVIDIA GeForce RTX2080 Ti GPUs, with 11GB
RAM each. Networks were trained for 150 epochs and evaluated on the following met-
rics: Dice coefficient (or F1-score), precision, recall and average precision (AP). The



Dice coefficient was computed using the true positive, false positive and false negative
values at two different levels: individual pixels (pizel-wise) and full predicted electrode
contacts (contact-wise). To avoid confusion, the pixel-wise Dice coefficient will be re-
ferred to as ‘Dice coefficient’ while the contact-wise Dice coefficient will be referred
to as ‘Fl-score’ in the rest of the paper. As a correct localisation of all the contacts
is more relevant for the task than accurately segmenting individual pixels, segmented
instances were identified and the other metrics were computed instance-wise. For this
reason, an algorithm based on a connected component count was implemented to
identify segmented instances and to compute the number of true positive (TP), false
positive (FP) and false negative (FN) predicted contacts for each test case, which were
then used to calculate the evaluation metrics as follows:

Precision — TP
recision = TP+ FP
TP
l= ————
Reca TP+ FN

precision *x recall
F1i-score = 2 x

precision + recall

Average Precision is calculated as the area under the precision-recall curve.

To evaluate the statistical significance of the results, a paired two-sample Student’s
t-test was performed, testing the Hybrid network against the results obtained with the
2D and the 3D models separately.

4. Results and Discussion

Average training times for the 2D and the 3D model were 1h31" and 5h18’ respec-
tively. Results obtained with the 2D, 3D and the Hybrid U-Net, calculated after cross-
validation and averaged across all folds are given in Table 1. For comparison, results
from the previous study (Pantovic et al. 2022a) are also given in Table 1.

We first observe a slight improvement in the results, over all validation metrics,
obtained using the 2D and the 3D model when compared to the results previously
obtained using the same network models without any data augmentation (Pantovic
et al. 2022a). However, when looking at the number of false positive and false negative
segmented contacts, we conclude that using simple augmentation techniques alone was
not enough to overcome the main issues of these two networks: incorrectly classifying
metallic artefacts as electrode contacts with the 2D U-Net (high rate of FP) and
failing to segment most of the edge contacts (high rate of FN) with the 3D U-Net.
We also observe that the proposed Hybrid network outperformed both the 2D and
the 3D models, taking advantage of each of them, which resulted in a lower number
of both FP and FN segmented electrode contacts. This can also be clearly observed
when visualizing the resulting predictions.

To test the statistical significance of the results, a paired two-sample Student’s t-
test, with the significance level o« = 0.05, was performed over the Fl-score, which is



the most relevant to our problem, testing the Hybrid network against the 2D and
the 3D U-Net. Resulting p-values were 6 x 104 and 8 x 104, respectively, proving
the improvement to be statistically significant. The 2D and the 3D models were also
tested individually against the results obtained in the previous study (Pantovic et al.
2022a) without data augmentation. Both of the resulting p-values were greater than
0.05, indicating no statistically significant difference on this metric. We can conclude
that using the Hybrid approach brings more benefit than performing a simple data
augmentation.

Figure 3 shows 2D visualizations highlighting the advantages/disadvantages of the
three models. All models correctly segmented most of the electrode contacts. However,
as it can be seen in the first row of Figure 3, the 3D U-Net sometimes failed to segment
contacts lying close to the skull (FN in blue). On the other hand, the 2D model
sometimes misclassified strong artefacts as electrode contacts, which can be seen in the
second row of Figure 3 (FP in red). By averaging the output scores of these 2 models,
the Hybrid network successfully overcame those issues, correctly avoiding artefacts and
more efficiently segmenting edge contacts (Figure 3d). In extreme cases where an edge
contact appeared to be overlapping the bone in the CT image, completely matching
bone brightness, Hybrid U-Net failed to segment such contacts. These false negatives
could be identified when grouping the contacts into electrodes and correlating with
electrode specifications.

3D views of the ground truth and prediction masks obtained with the 2D U-Net, 3D
U-Net and the Hybrid U-Net are given in Figure 4. The detected connected components
are labelled in different colours. False positive contacts are highlighted with white
circles while a red circle is inserted where a contact was missed (false negative). With
the 2D model, all false positives are caused by strong artefacts, while with the 3D model
both false positive and false negative predictions correspond to the edge contacts - they
are either missed or the tip of a screw was misclassified as an electrode contact. As it
can be seen in Figure 4c, these flaws are improved when the two models are combined
into a Hybrid network.

A remaining concern is the segmentation of the vertically implanted electrode. Ver-
tical electrodes appear on the axial plane as a single contact (see for instance the
single white shape at the bottom of Figure 3a) and on most slices as an uninterrupted
shape, with only slight brightness variations and no clear space between neighbouring
contacts. In 3D, whatever the network used for segmentation, most of their contacts
appear connected (see Figure 4c), and would require further postprocessing to obtain

Table 1.: Results obtained with the 2D U-Net, 3D U-Net and the Hybrid U-Net model,
averaged across all cross-validation folds. The first two rows correspond to results from
the previous study (Pantovic et al. 2022a), while the third and the fourth row show
results of the 2D and 3D model trained on the augmented dataset.

Network Dice  1p  pp PN Precision Recall Y1 AP
model coef. score

2D UNet Pantovic et al. 0.807 180.6 9.6 44 0.950 0.976 0.963 0.927

3D U-Net pantovic et a1.  0.806 179.5 50 5.5 0.973 0.970 0.971 0.943

2D UNet 0.850 182.2 7.6 2.8 0.960 0.985 0.972 0.945

3D UNet 0.810 180.1 4.0 4.9 0.978 0.973 0.975 0.949

Hybrid UNet 0.867 183.0 1.1 2.0 0.994 0.989 0.992 0.981
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(e) Original image (f) 2D U-Net (g) 3D U-Net (h) Hybrid U-Net

Figure 3.: Original images and predictions obtained with the 2D, 3D and the Hybrid
U-Net models. True positive pixels are colored in green, false positives in red and false
negatives in blue.

a correct segmentation, such as applying erosion and dilation operations.

The proposed segmentation approach is based on the use of both a 2D and 3D
U-Net model, strengthening their respective advantages through their combination
into a hybrid network. The ensambling method is simple - averaging the softmax
activation of the 2 models, yet it drastically improves the individual results of the
2D and the 3D networks alone, successfully overcoming their respective limitations -
incorrect classification of metal artefacts as electrode contacts (2D U-Net) and failure
to segment most of the edge contacts (3D U-Net). Different ways of combining the
networks could be implemented in place of the averaging method, such as using a
weighted sum, introducing a different network architecture in the hybrid network and
using majority voting. However, the results reach the desired accuracy and we do not
think that more complex ways of ensambling the networks would bring any benefits
to the task. On the other hand, as the 2D model benefits from additional synthetic
training images (Pantovic et al. 2022b), segmentation could possibly be refined by
training the 2D network on a larger, combined dataset while the 3D model remains
trained on real and augmented volumes only. This remains to be evaluated.

The final stage of the SEEG electrode segmentation is grouping the segmented
contacts by their corresponding electrodes, using Gaussian mixture models. Results
are represented in Figure 5, where each cluster is labeled with a different color.

5. Conclusion and Outlook

In this paper we proposed a method for segmentation of SEEG electrode contacts com-
bining a 2D and a 3D U-Net encoder-decoder architecture into a Hybrid network. The



(c) Hybrid U-Net (d) Ground truth

Figure 4.: 3D views of prediction masks obtained with the 2D U-Net, 3D U-Net and the
Hybrid U-Net and the ground truth. Connected components are labelled in different
colours. FP are highlighted with white circles and FN with a red circle.

network has been evaluated on the CT images of 18 different patients who underwent
SEEG procedure at Strasbourg University Hospital. The proposed solution to provide
an accurate segmentation of electrode contacts does not require any prior informa-
tion about the type nor the number of electrodes. The contacts are then grouped into
electrodes using Gaussian mixtures, taking as input number of implanted electrodes.

The proposed method yields the average result of 1.1 false positive contacts and 2.0
false negative contacts per patient, out of 185 contacts (on average) to be identified.
Most of the electrodes have all of the contacts correctly segmented and they can be
labeled according to the cortical parcellation. The rare cases of false positives or false
negatives proved to belong to a contact that lies closest to the screw. As there is a
known number of electrode contacts that an electrode model can have, this could be
used to identify which electrode has a missing (or an additional) contact in order to ad-
just it. We are confident that this way the Hybrid network could be reliably integrated
in a computer-assisted decision-making pipeline, to save neurosurgeons valuable time



Figure 5.: Results of the contact clustering with Gaussian mixture models. Each cluster
is represented with a different color.

on locating implanted electrodes and increase the accuracy of the task.

In the future work, our goal is to automate and optimise the trajectory planning
process of multiple electrodes that are used during SEEG, which is currently performed
manually by neurosurgeons and neurologists. The approach proposed in this paper
will allow for an automatic labeling of high number of retrospective cases which would
further be used for training the model.
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