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Abstract

Purpose: Stereoelectroencephalography (SEEG) is a minimally inva-
sive surgical procedure, used to locate epileptogenic zones. An accurate
identification of the metallic contacts recording the SEEG signal is
crucial to ensure effectiveness of the upcoming treatment. However, due
to the presence of metal, postoperative CT scans contain strong streak
artefacts that interfere with deep learning segmentation algorithms and
require a lot of training data to distinguish from actual contacts. We
propose a method to generate synthetic data and use them to train a
neural network to precisely locate SEEG electrode contacts.
Methods: Random electrodes were generated following manufacturer’s
specifications and dimensions, and placed in acceptable regions inside
metal-free CT images. Metal artefacts were simulated in the generated
dataset using radon transform, beam hardening, and filtered back
projection. A UNet neural network was trained for the contacts seg-
mentation task using various training setups combining real data, basic
augmented data and synthetic data. The results were compared.
Results: We reported a higher accuracy when including synthetic data
during the network training, while training only on real and basic aug-
mented data more often led to misclassified artefacts or missed contacts.
The network segments post-operative CT slices in less than 2 seconds
using 4 GeForce RTX2080 Ti GPUs and in under a minute using a
standard PC with GeForce GTX1060.
Conclusion: Using synthetic data to train the network significantly
improves contact detection and segmentation accuracy.

Keywords: Stereoelectroencephalography, Epilepsy, Data Augmentation,
Segmentation, Sinogram, Radon transform
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1 Introduction

Epilepsy is one of the most frequent serious neurological disorders. Current
antiepileptic drugs are effective in 60-70% of individuals. For patients with
pharmacoresistent focal epilepsy of structural etiology [1], surgical resection
may be an appropriate treatment option. In such cases, a successful resection
relies on the accurate identification of the epileptogenic zone which is usually
achieved through Stereoelectroencephalography (SEEG)[2]. Deeply located
areas of the brain are explored owing to the surgical implantation of multiple
depth electrodes, recording neuronal activity through metallic contacts evenly
spaced along their body. The recording of SEEG signals and spatial association
with the contact location allows for the detection of the spatial and temporal
organization of the epileptic seizure [3], its starting point, and decide of the
zone to resect. Identifying the exact location of up to 250 metallic contacts is
an extremely time consuming task that is usually performed manually and is
highly prone to human error and inaccuracy. In order to save valuable time
and potentially increase the effectiveness of the upcoming surgical procedure,
several groups have been working on automatic SEEG electrode localisation
[4–8]. In a previous work, we proposed an approach to automatically segment
the electrode contacts using 2D and 3D UNet [8], where post-implantation CT
scans showing the SEEG electrodes were used to train a neural network.

However, due to the presence of metal, artefacts appear on the CT scans
as bright streaks around the metal and dark streaks between two metallic
contacts, and impair their visibility and detection. Models trained with this
kind of data in insufficient number often result in false positives. Usual data
augmentation provides better results, but does not bring more variety in the
training samples and continues to mark artefacts as false positives. To bring
more variety to the training dataset, we propose to generate synthetic data
with a sufficient level of realism in terms of electrode and contact locations and
appearance of the final image. The three objectives are to easily increase the
size of the training dataset while controlling the variety of the configurations
and automatically generating the ground truth during the process to avoid a
tedious annotation task.

This paper introduces an approach to generate synthetic volumes mimick-
ing post-implantation CT images. Section 2 details the selection of locations
for the generated contacts, and the generation of the final image with artefact
simulation. In Section 3, we present the UNet architecture and the experimen-
tal setup. Section 4 shows and discusses the obtained results, after which a
conclusion is drawn.

2 Methods

The synthetic volumes were built from representative CT volumes without
metal implant. Four plain CT head volumes were selected as base volumes from
the CQ500 dataset publicly available on Qure.ai [9]. From that base, contacts
were added at random but relevant locations and the artefacts were simulated.
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2.1 Generation of electrodes

2.1.1 Definition of the acceptable regions

The chosen contact locations must be relevant enough to avoid obviously mean-
ingless images, for instance with electrodes parallel to the skull or entirely in
the brain. In usual practice, 10–18 SEEG electrodes with 5–18 contacts each
are implanted in the brain using a patient-specific scheme. The trajectory of
each electrode is defined by an entry point and a tip point chosen preopera-
tively according to hypotheses based on the symptoms and preliminary non
invasive exams. For aesthetic reasons, the electrodes are usually inserted where
the hair grows. The curvature of the skull may cause electrode deviation if the
electrode is not perpendicular to the cranial vault. The frontal and occipital
poles are little explored due to the difficulty of resection in that area, mostly
for functional reasons. The tip point is located in a deep region of the brain.
Most of the electrodes are usually implanted laterally in one hemisphere, sur-
rounding the suspected volume. A few contralateral electrodes can also be
implanted in the opposite hemisphere. It is also not rare to implant orthogonal
(vertical) and oblique electrodes [10].

To simulate the above rules, two regions of interest (ROI) to contain respec-
tively the entry point (external region) and tip point (internal region) of
the generated electrodes were automatically defined on the base CT volumes.
An observation of retrospective CT images of patients who underwent SEEG
exploration showed that for most of the electrodes the first contact was at
the edge of the skull and the last contact was located towards the centre of
the brain. To build the external region, the brain and its contour were semi-
automatically segmented on each base CT volume using 3DSlicer [11] and
contour detection [12]. Since the electrodes cannot be inserted in the front and
back of the head, the contours were filtered and the corresponding parts were
removed based on their y and z coordinates.

In order to delineate the internal region corresponding to the tip of the
electrode, a cylinder was defined in the centre of the head. The height of the
cylinder was set to 40 voxels, the length of the large radius to 100 voxels and
the length of the small radius to 80 voxels, to fit most electrode models and
lengths. An example of the resulting internal and external regions can be seen
on Fig.1. Considering that a majority of electrodes are implanted in the same
hemisphere, each ROI was divided into two classes: ‘right ’ and ‘left ’. This
allows to control the distribution of the electrodes between the hemispheres.

2.1.2 Generation of electrodes within the regions of interest

To generate a synthetic electrode, a candidate point was randomly selected
within each of the two, and their direction vector was computed. A distance of
at least 15mm must be maintained between all the electrodes. Therefore, the
distances between the line defined by the two candidate points and all the pre-
viously generated electrodes were computed. If at least one distance was under
the fixed threshold, the two points were discarded and two new points were
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Fig. 1 Examples of external (green) and internal (yellow) regions of interest, and generated
electrodes (blue), visualised as 3D models

selected. Once an acceptable couple of candidate points was found, an elec-
trode model was chosen among available models provided by the manufacturer
(Microdeep® depth electrodes, DIXI Medical, Besançon, France). The semi-
rigid depth electrodes are 0.8mm in diameter, and may have various lengths
(16–80.5mm) and number of contacts (5–18) according to the model. Based
on the manufacturer’s specifications and dimensions evenly spaced cylinders
representing the depth electrode contacts in our CT volumes were generated.
As shown in Fig.1, all the synthetic electrodes start on the external region and
aim at the internal region. The output of this process is a three-dimensional
binary contact mask Vm representing the cylinders.

2.2 Generation of synthetic CT images with metal
artefact simulation

The simulation of CT metal artefact has been well studied in medical imaging
applications [13–16], mostly to build test cases for metal artefact reduction
algorithms, or in other fields such as simulation of threat images [17]. Metal
streak artefacts are caused by multiple mechanisms, including beam harden-
ing, scatter and Poisson noise [18]. Beam hardening and scatter both produce
dark streaks between two metal objects. When the X-ray passes through an
object with a high attenuation coefficient, they cause a strong attenuation and
do not pass through metal under certain incidences, resulting in corrupt or
missed data in the projection (sinogram). Consequently, the CT reconstruc-
tion process amplifies the missing data in the sinogram due to the logarithmic
function and causes the light and dark streaks on the CT image [13, 14, 17].

Our method to simulate metal artefacts is a simplified monochromatic ver-
sion inspired by [15], where the authors used synthetic artefacts generation to
test artefact reduction algorithms. The process starts by mapping the metal-
free CT volume VCT and the metal-only 3D contact mask Vm to the projection
domain using radon transform using the ASTRA module [19], to obtain respec-
tively sinograms SCT and Sm. The artefacts are then simulated by normalising
Sm in the interval [0, 1], and hardening it to obtain a S ′

m, as follows:

S ′
m(x) =

{
1, Sm(x) > 0

0, Sm(x) = 0
(1)
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Fig. 2 Flow chart of the metal artefact simulation process

S ′
m(x) is then combined with SCT to form Sc as: Sc = SCT +ωSm, where ω is

a parameter defining how strong the artefacts will be. Poisson random noise
is applied to Sc based on the X-ray spectrum to simulate realistic quantum
noise in the projection, and form a noisy projection Sn. Finally, the metal-
inserted volume Vf is reconstructed from Sn using three-dimensional filtered
back projection. The overall process is illustrated on Fig.2.

3 Validation and experimental setup

In order to evaluate the impact of the synthetic data on the segmentation
of SEEG electrode contacts, UNet neural network architecture [20] has been
trained in five different setups described in the subsection below.

3.1 Datasets and training setups

Three types of data were used, that will later be referred to as real, augmented
and synthetic data/volumes. The real volumes consist of post-implantation
CT scans from 18 patients who underwent SEEG at Strasbourg University
Hospital. Each CT slice is of resolution 512× 512, with the number of slices in
each scan varying between 166 and 259, accounting for a total of 4139 slices.
Annotation of the electrode contacts was done manually using 3D Slicer[11]. To
enlarge the dataset, the augmented volumes were built from the real data using
some basic augmentation techniques - rotation and flipping. The annotations
were transformed accordingly. The synthetic volumes were generated using the
approach described in Section 2. The artefact strength parameter was set to
ω = 0.08, chosen to simulate artefacts similar to those that appear in the real
dataset. Metal-inserted CT volumes were generated with corresponding binary
masks of electrode contacts as a ground truth. Each generated case contains
between 217 and 253 slices of resolution 512 × 512, and an average of 185
metallic contacts. Examples of real and synthetic data are shown on Fig.3.

Real, augmented and synthetic data were used to train UNet for the
electrode segmentation task. In order to compare impact of the different
training datasets on the segmentation results, network was trained using five
combinations of the different datasets, that constitute five experimental setups:
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(a) (b) (c) (d)

Fig. 3 Examples of the real (a,b) and synthetic (c,d) images

• Real: Training dataset composed of real data only, which includes 4139
slices from 18 different patients.

• Augmented: Training dataset composed of half real data and half aug-
mented data, for a total of 36 volumes (18 volumes of each). Each real data
volume was used to create one augmented volume, for a total of 8278 slices.

• Synthetic: Training dataset composed of half real data and half synthetic
data, for a total of 36 volumes (18 volumes of each). The 18 synthetic
volumes together contain 4121 slices, so this dataset consists of 8260 images.

• Augmented + Synthetic: Training dataset composed of 18 real volumes,
18 augmented volumes and 18 synthetic volumes, for a total of 12399 images.

• Large Augmented: Training dataset composed of 18 real volumes and 54
augmented volumes, i.e. 16556 images. The objective of this setup is to
assess whether a possible increase in accuracy when using our synthetic data
would be due to a higher amount of data used for training or rather because
the synthetic data has a specific impact on what the network learns.

3.2 Network Configuration

To segment SEEG electrode contacts from the post-implantation CT scans,
we have implemented the encoder-decoder UNet architecture [20]. The left
side of the “U” shape represents a general convolutional process, consisting of
the repeated application of two 3× 3 convolutions. Each convolutional layer is
followed by a ReLU activation and batch normalisation. Then, spatial dimen-
sions are reduced by applying a 2×2 max pooling operation. The right side of
the “U” shape is built by up-sampling of the feature map followed by a 2× 2
transpose convolution. At the final layer, a 1×1 convolution is used after which
each pixel is classified either as an electrode contact or a background pixel.

The network was trained in the five above setups. In order to reduce mem-
ory usage, all slices were cropped to the dimension of 400×400 pixels, removing
only background pixels and preserving the whole skull within the frame. Each
training was done in the identical hyper-parameter setup. Adam optimiser was
used with the initial learning rate 1 ∗ 10−5, β1 = 0.9, β2 = 0.999, ϵ = 1 ∗ 10−8

and the learning decay of 1.99 ∗ 10−7 was used to help fine-tune the network.
The loss function was binary crossentropy. The number of epochs was deter-
mined empirically and set to 150. Networks were cross-validated using the
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Table 1 Training time for 150 epochs and average results of the UNet model after
leave-one-out cross validation performed in five different setups, evaluated on seven metrics.

Setup
Training

time
Dice
coef.

IoU TP FP FN PPV TPR

Real 45’ 0.807 0.704 180.6 9.6 4.4 0.950 0.976
Augmented 1h31’ 0.850 0.748 182.2 7.6 2.8 0.960 0.985
Synthetic 1h29’ 0.848 0.742 183.6 3.4 1.4 0.981 0.992
Augm.+Synth. 5h45’ 0.862 0.764 184.3 2.6 0.7 0.986 0.996
Large Augm. 6h38’ 0.857 0.756 183.0 5.3 2.0 0.972 0.989

‘leave-one-out’ approach: for each training phase one real volume was left out
for testing. In all five setups, testing was done on the set of slices belonging
to a single patient from the real dataset, unseen during the training. The data
that were created from the current test case were also left out during training.

3.3 Experimental conditions and metrics

Training was performed on 4 NVIDIA GeForce RTX2080 Ti GPUs, each with
11GB RAM. Networks were trained for 150 epochs for each cross-validation
fold and evaluated based on the Dice coefficient and Intersection over Union
(IoU). Furthermore, an algorithm based on the connected component count
was implemented to compute the number of true positive (TP), false positive
(FP) and false negative (FN) segmented contacts for each test case, which were
further used to calculate the Positive Predictive Value, PPV = TP

TP+FP and

the True Positive Rate, TPR = TP
TP+FN . Predictions for the left-out case were

made in less than 2 sec. using this configuration. For reference, on a standard
PC with one Nvidia GeForce GTX1060, prediction time is under one minute.

4 Results and Discussion

Fig.4 shows the results on 4 examples with different levels of complexity. For
each example, the original CT image is shown on row 1, and the predictions
from the five different setups on rows 2-5. TP (contacts properly found) are
represented in green, FP (artefacts detected as contacts) in red, and FN (con-
tacts not found) in yellow. In all five setups most of the contacts are properly
found. The training times and metrics are summarised in Table 1. Given values
are averages across all validation folds.

As we can observe on Table 1, all of the data augmentation setups outper-
formed the Real setup. With this setup, the network segments well the ‘clear’
electrodes when artefacts are not too strong (Fig.4, row 2, column 1). When
the artefacts are very bright, the network often misclassifies them as contacts
(row 2, col. 2-3, FP in red). On the contrary, the network fails to segment con-
tacts that coincide with the skull or the screw in the CT scan (row 2, col. 4,
FN in yellow). IoU and Dice coefficient are relatively low, indicating that the
segmentation is imprecise. This observation confirms the need to augment the
training datasets to obtain better results.
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Fig. 4 Original images and predictions obtained from the five different setups. Columns
represent different situations: simple/general case (column 1), strong artefacts (columns 2-
3), contact close to structures of similar brightness such as screw and skull (column 4).

When comparing training with the Augmented and Synthetic setups, that
both doubled the number of training data, we observe that the Augmented
setup led to higher Dice coefficient and IoU, but also higher numbers of FP
and FN. This indicates that the Augmented setup was better at delineating the
identified contacts, but that more contacts were missed (Fig.4, row 3, col. 4)
and more artefacts were misclassified as contacts (row 3, col. 2-3). In the Aug-
mented setup, the network did not overcome the issue of strong artefacts nor
the contacts coinciding with the skull. The Synthetic setup seems less sensitive
to artefacts (row 4, col. 2-3), and found more often the skull contacts, (row 4,
col. 4). Slightly lower Dice and IoU scores obtained in the Synthetic than in
the Augmented setup may be explained by the fact that real/augmented data
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were manually annotated, while the labels of the synthetic data were auto-
matically saved during electrode generation. Training with synthetic data may
have introduced discrepancies of annotations between real/synthetic labels.

The highest validation scores have been reached after training the network
on the real, augmented and synthetic data all together (Augmented + Synthetic
setup). This is consistent with the visualised results (5th row of Fig.4). The
number of FP and FN contacts was reduced while the delineation of each
contact seems more accurate. As we can see, the artefacts were avoided and
the contacts in the skull area were well segmented. This setup seems to take
advantage of both additional datasets for a refined prediction compensating the
discrepancy. One could object that the results were better because the amount
of training data was tripled. As mentioned in Section 3.1, the Large Augmented
setup quadrupled the training data but used only basic augmentation. We can
observe on Table 1 that the Augmented + Synthetic setup performed better
than the Large Augmented setup for a comparable (even a little lower) number
of data. This may be due to a better variety in the electrode configurations
and examples of artefacts. Due to a lack of variety, the Large Augmented setup
remained sensitive to artefacts and failed to segment some skull contacts.

We conclude that the generated synthetic data have a positive impact on
the accuracy of the segmentation, which is supported by the statistical analysis
of the results, performed over the PPV and the TPR. A paired two-sample Stu-
dent’s t-test was performed, testing the Augmented + Synthetic setup against
each of the other setups without synthetic data. The difference was found sta-
tistically significant (p-values < 0.05) over both metrics. The configurations of
electrodes, as well as the amount and strength of the artefacts in the synthetic
images can be fine-tuned, which helps the network learn to better distinguish
between the artefacts and actual electrode contacts. In the synthetic images,
electrode contacts closest to the screws are always placed on the edge of the
skull, which improves the training on this particular configuration. However,
in rare cases even with the synthetic data such contacts are sometimes missed,
when they are visually completely connected to the screw on the CT image.

Another remaining issue is the segmentation of the vertically implanted
electrode. Vertical electrodes appear on the axial plane as a single contact
(see Fig.3b) and on most slices as an uninterrupted shape, with only slight
brightness variations and no clear space between neighbouring contacts. In 3D,
most of their contacts appear connected. In Fig.5, we show 3D views of ground
truth (left) and prediction masks obtained from the Augmented + Synthetic
setup (middle and right) for two real datasets. The left and middle columns
show the connected components in different colour which allows us to easily
detect merged contacts. In the right column, TP are shown in grey while FP
(contacts detected instead of a screw) are highlighted in red.

Further work needs to be done to overcome the few remaining issues. The
merged contacts on vertical electrodes could be separated using dilation and
erosion operations. The remaining FP or FN could be identified when grouping
the contacts into electrodes and correlating with electrode specifications.
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Fig. 5 3D views of ground truth (left) and prediction masks of the Augmented + Synthetic
(middle and right) for two real datasets. The left and middle column show the connected
components labelled in different colours. In the left column, FP are highlighted in red.

5 Conclusion

In this paper we proposed an approach to automatically generate synthetic
volumes mimicking SEEG post-implantation CT images, to augment the
training dataset and improve automatic contact segmentation. This approach
offers a possibility to easily build large training datasets and better control
their variety, while automatically generating the ground truth. To validate
the impact of the synthetic data on the training, a UNet neural network was
trained with five different data configurations. The results showed that basic
augmentation methods were not sufficient for a network to learn to separate
contacts from the metallic artefacts, whereas adding synthetic images had a
significantly positive impact allowing to overcome this issue. Some limitations
persist however even with the synthetic data, with vertically implanted elec-
trodes where the segmented contacts may be merged, or with contacts close
to structures of similar brightness that may remain misclassified.

Declarations
Funding: This work was supported by ArtIC “Artificial Intelligence for Care”
grant (ANR-20-THIA-0006-01), co-funded by Région Grand Est, Inria Nancy -
Grand Est, IHU Strasbourg, University of Strasbourg and University of Haute-
Alsace, France.
Conflict of interest: The authors have no conflict of interest to declare.
Ethics approval This research study was conducted retrospectively from
anonymised data, in accordance with the ethical standards of our institution
and with the 1964 Helsinki declaration and its later amendments or comparable
ethical standards.
Informed consent: Informed consent was obtained from all individual
participants included in the study.



Springer Nature 2021 LATEX template

Generation of synthetic training data for SEEG electrodes segmentation 11

References

[1] Scheffer, I.E., Berkovic, S., Capovilla, G., Connolly, M.B., French, J., Guil-
hoto, L., Hirsch, E., Jain, S., Mathern, G.W., Moshé, S.L., Nordli, D.R.,
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