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Abstract

Purpose: Traditional techniques for automating the planning of brain electrode
placement based on multi-objective optimization involving many parameters are
subject to limitations, especially in terms of sensitivity to local optima, and tend
to be replaced by machine learning approaches. This paper explores the feasibility
of using Deep Reinforcement Learning (DRL) in this context, starting with the
single-electrode use-case of Deep Brain Stimulation (DBS).
Methods: We propose a DRL approach based on deep Q-learning where the
states represent the electrode trajectory and associated information, and actions
are the possible motions. Deep neural networks allow to navigate the complex
state space derived from MRI data. The chosen reward function emphasizes safety
and accuracy in reaching the target structure. The results were compared with a
reference (segmented electrode) and a conventional technique.
Results: The DRL approach excelled in navigating the complex anatomy, consis-
tently providing safer and more precise electrode placements than the reference.
Compared to conventional techniques, it showed an improvement in accuracy of
2.3% in average proximity to obstacles and 19.4% in average orientation angle.
Expectedly, computation times rose significantly, from 2 to 18 minutes.
Conclusion: Our investigation into DRL for DBS electrode trajectory planning
has showcased its promising potential. Despite only delivering modest accuracy
gains compared to traditional methods in the single-electrode case, its relevance
for problems with high-dimensional state and action spaces and its resilience
against local optima highlight its promising role for complex scenarios. This pre-
liminary study constitutes a first step towards the more challenging problem of
multiple-electrodes planning.

Keywords: Reinforcement learning, Deep Q-learning, Deep Brain Stimulation, Path
planning, Optimization
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1 Introduction

Stereotactic electrode implantation encompasses a range of interventions among which
Deep Brain Stimulation (DBS) and Stereoelectroencephalography (SEEG). DBS is a
surgical treatment aimed at alleviating symptoms in patients with movement disorders
like Parkinson’s disease and essential tremors. The procedure [1] involves the insertion
of one electrode into a deep brain target to stimulate it with high-frequency electrical
impulses. Despite its invasive nature, this method has gained in popularity because it
offers a flexible and reversible alternative to the permanent removal of functional areas,
while effectively alleviating the symptoms of the disease. SEEG aims to accurately
locate the epileptogenic zone in patients with pharmacoresistant focal epilepsy before
surgical removal. Between 10 and 18 are implanted in selected brain areas to record
neuronal activity through metallic contacts evenly spaced along their body [2].

If both implantation procedures suffer from a complex planning, SEEG presents
an even greater complexity compared to DBS, due to a higher number of electrodes,
a less precise targeting objective, and possible electrode conflicts. Indeed, while DBS
targets one tiny nucleus, which may be assimilated to a single point in 3D space, SEEG
electrodes have to ensure that a maximal number of metallic contacts are included in
the areas selected for exploration in the gray matter.

Consequently, it can take up to 1h30 for DBS and several hours for SEEG of a
collaborative effort of multiple clinicians, including neurosurgeons, neurologists, and
neuroanatomists, to converge to an optimal and safe implantation strategy. This piv-
otal step requires a high degree of expertise and experience. For DBS, the standard
placement suggested by the existing software has to be fine-tuned through a long trial-
and-error approach. For SEEG, the trial and error process has to be repeated multiple
times for all electrodes, as each electrode may interfere with the others. In this con-
text, automated preoperative planning assistance is a much-awaited feature that many
research teams have been trying to address, with the dual aim of saving valuable time
and potentially increasing the efficiency of the procedures.

Most of the related works used traditional techniques based either on brute force
or multi-objective optimization. In scenarios with a high number of parameters, such
as SEEG, these approaches face a rapid growth of combinatorial possibilities and
challenges in terms of convergence and sensitivity to local optima. These techniques
tend to be replaced nowadays by machine learning approaches to scale up. However, for
both DBS and SEEG, the limited availability of sufficiently large training datasets may
hinder the use of such methods. In this context, Reinforcement Learning methods that
do not require large training datasets appear to be a promising and viable alternative.

This paper presents a preliminary study initiating an exploration of the potential
of using Deep Reinforcement Learning (DRL) techniques for brain electrode placement
planning. To start with a simple application, this paper focuses on the single-electrode
use-case of DBS.

More complex, multi-electrode planning is left for future work. In the following
sections, we detail a DRL method based on deep Q-learning, with states indicating
the electrode trajectory, actions representing possible motions, and a reward function
prioritizing safety and accuracy. Our findings are benchmarked against a reference
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electrode and a conventional technique. Finally we discuss and conclude about the
potential of DRL in the context of brain electrode placement planning.

2 Related works

In the past few decades, numerous approaches have been introduced to alleviate the
workload of clinicians during the planning phase and enhance the information con-
sidered in determining an optimal trajectory. The wide and exhaustive survey on
surgical planning assistance dedicated to keyhole and percutaneous surgery published
by Scorza et al. [3] details the various techniques proposed to automate the computa-
tion of needles or electrodes placement in general. Among other applications, it covers
the placement of brain electrodes for stereotactic neurosurgery, including DBS.

The automatic computation of optimal placement for DBS electrodes has been
relatively well studied in the literature. If early planning tools were still requiring sub-
stantial manual intervention [4–6], subsequent approaches proposed a more automated
assistance to the task [7–13]. Some of these methods emphasized more particularly
the safety by maximizing the separation between the candidate trajectory and critical
structures [8, 11], while others considered a broader range of placement rules, catego-
rized as hard or soft constraints [7, 9, 10, 12, 13]. Regardless of the specific approach,
these methods aiming at ensuring feasibility and safety, were exclusively based on con-
ventional methods to find an optimum. Some authors used heuristic-based approaches
with gradient-free optimization algorithms [9, 10] or Pareto front optimization [13],
while many simply used a brute force method consisting in an exhaustive exploration
of the whole search space [7, 8, 11, 12]. The reported execution times ranged from 15
minutes to a few seconds. The approaches accounted for 3 to 6 degrees of freedom per
electrode, depending on whether the target point was manually fixed by a clinician
prior to the search or part of the explored variables.

As pointed in the introduction however, in multiple-electrode scenarios with a high
number of parameters, brute force algorithms are confronted with the rapid growth of
combinatorial possibilities, and optimization methods are limited by their sensitivity
to local optima. These techniques tend to be replaced nowadays by machine learning
approaches in order to scale up, but to the best of our knowledge, no attempt has
yet been made to introduce machine learning approaches in this field. Indeed, this
problem is limited by the lack of sufficiently large training datasets and the disparity
in image parameters, which make it difficult to consider using conventional supervised
learning approaches.

In this context, reinforcement learning (RL) seems to be a promising approach
for overcoming these limitations despite its longer computation times. This approach
doesn’t require large training datasets but instead gradually learns how to converge
via interactions with its environments, and adapts itself to environment changes.

In the field of medicine, particularly in the context of path planning, RL has, so
far, found application in robot-assisted surgery [14, 15]. In neurosurgery, Segato et
al. [14] explored GPU-based Asynchronous Advantage Actor-Critic (GA3C) RL-based
path planning for steerable catheters. This approach also encountered difficulties with
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training efficiency. Guanglin et al. [15] proposed a heuristically accelerated deep Q-
learning algorithm for needle insertion that integrates a fuzzy inference system into the
framework, combining heuristic policies and RL methods. Simulations in this study
showed promising results, including substantial reductions in training episodes.

3 Materials and Methods

3.1 General Objective

In this study, we undertake a comparative analysis between an automated electrode
trajectory planning method based on deep reinforcement learning (DRL) and conven-
tional optimization techniques. Our primary objective is to evaluate the effectiveness
of the DRL approach in determining the optimal electrode trajectory for Deep Brain
Stimulation (DBS), with a focus on safety and efficacy. The DRL-based method is
benchmarked against the results obtained in our prior study [9], representing con-
ventional optimization methods in the context of DBS electrode trajectory planning,
where the following constraints governing the electrode placement for DBS were
collected from experienced neurosurgeons:

1. Ensuring the electrode tip is within the target.
2. Proper positioning of the insertion point: The electrode must be implanted from the

upper surface of the scalp, adhering to accessibility and aesthetic considerations.
3. Restricting the maximal length of the trajectory: A maximum trajectory length

limits the search space avoiding unnecessary complexity.
4. Avoiding risky structures: To minimize risk, it’s crucial to avoid critical structures

such as ventricles and vessels. Avoiding trajectories through cortical sulci serves as
a strategy to avoid vessels, therefore sulci are also considered as a critical structure.

5. Minimizing the path length: Shorter trajectories reduce the risk of imprecision.
6. Maximizing the distance between the electrode and risky structures.
7. Optimizing the electrode orientation: Aligning the trajectory axis with the target’s

principal axis facilitates exploration of different depths within the target.
8. Placing the tip as close as possible to the center of the target.

In the prior study, constraints were addressed through an aggregative cost function:

f(X) = kd · fdepth(X) + kr · frisk(X) + ko · fori(X) + kc · fcenter(X) (1)

which combines the cost functions associated to constraints #5 (fdepth), #6 (frisk),
#7 (fori) and #8 (fcenter) respectively with their corresponding weight factors. In the
newly proposed method, these constraints are reflected in a reward function of the
DRL agent, as explained in detail later in this section.

3.2 Reinforcement Learning approach

3.2.1 Deep Q-learning

Numerous algorithms have been developed in the field of reinforcement learning, each
tailored to specific challenges. Our task presented a complex challenge due to its vast
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Fig. 1: Deep Q-network architecture. The architecture consists of Convolutional
(Conv), MaxPooling (MaxPool) and Fully Connected (FC) layers.

state space derived from MRI data. Deep Q-learning [16] was our methodology of
choice due to its adeptness at handling large state spaces.

Deep Q-learning combines the capabilities of DNNs with the principles of tra-
ditional Q-learning [17]. Q-learning seeks to determine the expected future rewards
for each state-action pairing, enabling an agent to discern optimal actions in varying
states. However, vast or complex state spaces make it unfeasible to maintain a Q-
value table for every state-action combination. Deep Q-learning addresses this by using
DNNs to approximate Q-values, thus efficiently generalizing across expansive state
spaces. The agent undergoes interactions with an environment, acquiring experiences
that encompass state, action, reward, and the subsequent state. These experiences
fill a replay buffer. As training progresses, random experiences are sampled from this
buffer, which ensures data decorrelation and augments the stability of the learning
process. The network is trained to predict Q-values such that the discrepancy between
predicted and target Q-values, based on the Bellman equation, is minimized. In the
context of our study, deep Q-learning provides a robust framework to handle the intri-
cate state space defined by neural structures and electrode trajectory parameters,
guiding the agent to propose safe and effective trajectories.

3.2.2 Architecture

Our deep reinforcement learning agent is backed by a DNN that processes the state
representations and estimates Q-values for the possible actions. The architecture is
represented in Fig.1 The model leverages the Huber loss and is optimized using the
Adam optimizer with a learning rate of 0.001.

3.2.3 Solution Space: States and Actions

In our deep Q-learning framework, the state is defined by the current electrode trajec-
tory, represented as a cylinder that extends from the entry point (EP), placed within
the insertion zone, to the target point (TP) within the predefined target, combined
with the positions of critical structures derived from the MRI scans. In each episode,
EP is initialized at a random position within the insertion zone, while TP is con-
sistently initialized at the center of the target. Actions are possible motions of the
electrode, i.e. translations of the EP and TP across the x, y, and z axes. We allow the
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agent to move the EP or TP in any direction, resulting in a total of 12 possible actions.
Like all reinforcement learning approaches, our algorithm learns to find the optimal
trajectory (EP/TP pair) through trial and error using feedback from its actions and
some rewards detailed in the next section.

3.2.4 Reward Function

The immediate reward after taking an action is primarily influenced by the safety and
efficacy of the resulting state (i.e., electrode placement) and is designed as:

R(s, a, s′) = −cd ·Rl(s
′)− cr ·Rr(s

′)− co ·Ro(s
′)− cc ·Rc(s

′) + Pi(s
′) + Pz(s

′) (2)

where s is the current state, a is the action taken and s′ is the resulting next state.
Despite the reward being a function of s, a and s′, it’s notable that all terms are
exclusively dependent on s′. The components of this function, normalized in line with
the previous approach [9], are defined as follows:

• Rl(s
′) accounts for the length of the trajectory (constraint #5 ):

Rl(s
′) =

distMin(TP, EP) - distTargetScalp

maxPathLength - distTargetScalp
(3)

• Rr(s
′) measures the agent’s proximity to critical structures (constraint #6 ):

Rr(s
′) = max

(
10.0− distMin(criticalStructures, electrodeTrajectory)

10.0
, 0

)
(4)

• Ro(s
′) denotes the alignment of the electrode’s trajectory with the principal axis of

the target structure (constraint #7 ):

Ro(s
′) =

angle(electrodeTrajectory, mainAxis(target))

90.0
(5)

• Rc(s
′) quantifies how close TP is to the center of the target (constraint #8 ):

Rc(s
′) =

distMin(TP, center(target))

10.0
(6)

• Pi(s
′) is a penalty received when the electrode trajectory is less than 2mm away

from critical structures, deterring the agent from unsafe trajectories.
• Pz(s

′) is a penalty applied if the state chosen is outside the predefined zones, ensur-
ing that EP and TP remain within the insertion zone and target. When an action
leads to a state (s′) outside these zones, a penalty of -10 is given and the state
remains unchanged (s′ = s).

Constants cd, cc, cr, co are used to weight their contributions to the reward function
and can be fine-tuned and adjusted based on the preferences of individual surgeons.
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(a) Scalp, insertion zone (pink), target (red), GPi
(orange), ventricle (brown) and sulci (green).

(b) Target (red), electrode (yellow),
path length l and orientation angle α.

Fig. 2: Visualisation of the RL environment (a) and optimization constraints (b).

3.3 Data and Preprocessing

To ensure a meaningful comparison with the prior study [9], our DRL algorithm was
evaluated on data from the same cohort of patients. This data consists of co-registered
pre-operative 3T T1-weighted MRI images (1 mm x 1 mm x 1 mm, Philips Medical
Systems) and post-operative CT scans (0.44 mm x 0.44 mm x 0.6 mm, GE Healthcare
VCT 64) obtained from patients who underwent DBS procedure. We focused on the
same 30 electrode trajectories, from 18 different patients, that were already segmented
and reconstructed, before being planned and evaluated in our previous work.

In the preprocessing stage of this study, to train the DRL agent, we employed data
from 13 additional patients, accounting for another 25 trajectories. This additional
data was prepared as follows. First, the scalp was segmented from the pre-operative
MRI using intensity-based segmentation in 3D Slicer [18]. The resulting scalp segmen-
tation represented the initial broad space within which the electrode could potentially
enter. To exclude implausible entry points, we applied a series of constraints. We
focused only on the upper surface of the scalp, as the lower regions are avoided for
accessibility and aesthetic reasons. Trajectories that would exceed a maximum allowed
path length were discarded. The resulting part of the scalp will in this paper be referred
to as insertion zone, and is represented in opaque pink color in Fig. 2a.

For consistency with the previous study [9], the electrode contacts were segmented
from the post-operative CT scans. This oblong structure, shown in Fig. 2 in red, was
used as the target, ensuring that comparisons were solely influenced by trajectory
computation rather than variances in location.

Ventricles were segmented using the FreeSurfer software [19] with atlas-based seg-
mentation techniques applied to the MRI scans. Cortical sulci were identified and
segmented with the BrainVisa Morphologist pipeline [20] from the MRI data.

For the purpose of validating the proposed trajectories, co-registration between
the post-operative CT scans and the pre-operative MRIs was performed using the 3D
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Slicer Registration module. This registration process ensured the accurate alignment
of the implanted electrodes with the corresponding pre-operative anatomical data,
facilitating a comprehensive assessment of the proposed trajectories against reference
trajectories. Proposed trajectories were segmented using the thresholding tool in 3D
Slicer, allowing us to isolate DBS electrodes from the surrounding brain tissue.

3.4 Experiments and Validation

In this section, we provide an overview of our experimental setup, encompassing the
training and validation procedures for the proposed deep Q-learning agent.

3.4.1 Training the Agent

To ensure the generalization of the agent, we used the data collected from 13 dif-
ferent patients, with 25 distinct trajectories as previously described. This diversity
was essential because each patient exhibits unique brain morphology, including varia-
tions in sulci positions and ventricle shapes. By training on diverse patient data, the
agent learned to adapt better to these patient-specific differences. Pre-operative MRI
scans were used for training, while post-operative CT scans were used to validate the
proposed electrode placements.

For training the deep Q-learning agent, the preprocessed data were cropped to
a size of 128 × 128 × 128, capturing the relevant areas of the head and brain. This
input volume contained labels for critical structures, insertion and target zone, and
the current electrode position, which was updated as the agent performed actions.

During the training phase, our agent interacted with the environment, accumulat-
ing state-action-reward-next state tuples, which were stored in a memory buffer with
a capacity of 10,000 experiences. Random mini-batches of 32 experiences were sam-
pled from this buffer for training the network. The state representations contained
information about the patient’s specific anatomy, electrode placement, and proximity
to critical structures,which, together with reward function, allowed the agent to learn
how to find the shortest and safest trajectory to the target.

An epsilon-greedy strategy was employed to balance exploration and exploitation.
The agent starts with an initial epsilon value of 1. Over time, this epsilon value is
adjusted using the formula

ϵ = max(min eps, ϵ× eps decayepisode) (7)

where min eps was set to 0.01 and eps decay to 0.995. This allowed for extensive early
exploration, reducing random actions over time while maintaining a slight chance of
exploration throughout the learning process. To maintain stable learning and prevent
abrupt policy changes, a target network approach was employed. The weights of the
primary Q-network were periodically copied to a target network every 100 steps.

Terminal states were defined under two conditions to ensure stability and progress:

1. Convergence to an optimal trajectory: over a sliding window of ten consecutive
actions, no significant improvement in the average reward, i.e. the agent consistently
suggesting the same trajectory, signifies a potential optimal solution.
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2. Reaching maximum episode length: an episode is terminated when the maximum
episode length of 500 steps is reached. As the largest sum of their diameters is 187
voxels, this maximum episode length provided ample room for the agent to explore
and reach any electrode position within the episode.

To create a meaningful comparison with the prior work [9], we focused on the same
set of weights for reward function (2): cd = 1, cr = 1, co = 4, cc = 4.

Training was performed on 4 NVIDIA GeForce RTX 2080 Ti GPUs, with 11GB
RAM each. The agent was trained for 1000 episodes, taking 18h04’ on the whole
training dataset.

3.4.2 Validation

Validation was done on the set of 30 trajectories from [9], unseen during training. For
each case, the agent required re-training for a certain number of episodes to adapt to
the patient’s unique morphology. This process continued until the agent converged,
consistently proposing the same electrode placement for ten consecutive episodes. On
average, it took 21 episodes to ensure adaptation to the differences in the environment,
such as variations in the shape and position of sulci unique to each patient.

4 Results and Discussion

The trajectories proposed by DQL (Tdql) are compared with those generated using the
conventional method [9] (Tconv) and the manual trajectories (Tref ). Numerical results
evaluating proximity to critical structures and orientation angle are shown in Table 1.

When comparing Tdql to Tref , we observe that in all cases, Tdql consistently main-
tains a larger distance from the sulci (4.5mm on average), indicating safer trajectories.
Furthermore, Tdql remains on average further away from the ventricles by 1.7mm com-
pared to Tref . In cases where Tref maintains a greater distance from ventricles, it
passes much closer to the sulci than Tdql. Figure 3 illustrates the trajectories for Case
#11, where Tdql (in yellow) can be compared to Tref (in blue), highlighting their
proximity to sulci (in green) and a ventricle (in brown).

In comparison to Tconv, we observe that Tdql, on average, maintains slightly greater
distances from both sulci and ventricles while being better aligned with the desired
target. The average angle between Tconv and the ideal orientation is 11.11 degrees,
whereas Tdql shows a slightly improved average angle of 8.96 degrees.

As expected, the DRL method requires significantly more computation time.
Adapting to individual patient environments and proposing an optimal trajectory
took between 14 and 23 minutes, averaging 18.6 minutes per patient. In contrast, the
conventional method had an average planning time of 2.3 minutes per patient.

To further improve the efficiency of the DQL approach, several strategies could be
considered in future works. Increasing the number of patients in the training dataset
could make the agent more generalizable and potentially reduce the adaptation time.
Accumulating information learnt after each new case, in the spirit of continual learning,
may also help develop the agent’s effectiveness. Incorporating heuristically accelerated
DQL algorithms proposed, along the lines of [15], could be considered to improve
training efficiency but perhaps at the cost of a higher sensitivity to local minima.
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The proposed approach can be tailored to suit different imaging modalities and
surgical requirements and constraints through modifications of the reward func-
tion, provided that all the relevant anatomical structures can be well identified and
segmented.

5 Conclusion

Our investigation into the application of Deep Reinforcement Learning for DBS
electrode trajectory planning highlights its promising potential. While the study
demonstrates modest accuracy gains compared to traditional methods in the case of a
single electrode, it constitutes a proof of concept that showed its suitability in the con-
text of brain electrode positioning. This study highlighted the relevance of the DRL

Table 1: Comparison between the trajectory produced by DRL planning, Tdql (with
cd = 1/cc = 1/cr = 4/co = 4), trajectory produced using conventional method, Tconv

(with kd = 1/kc = 1/kr = 4/ko = 4), and the reference trajectory, Tref .

Target Case
Distance to sulci (mm) Distance to ventricles (mm) Orientation (deg.)

Tref Tconv Tdql Tref Tconv Tdql Tconv Tdql

GPi

1 2.052 6.573 5.916 5.422 12.204 6.540 19.22 3.80
2 6.222 8.206 7.803 8.453 8.461 8.105 5.82 3.64
3 6.042 6.299 7.720 2.289 2.254 4.209 0.46 7.60
4 0.054 9.424 7.832 8.849 4.375 6.817 24.17 9.61
5 4.396 7.491 7.562 9.844 7.120 8.203 7.15 7.00
6 1.263 8.103 7.623 7.603 7.654 9.937 23.36 10.23
7 5.714 11.677 9.827 1.805 5.347 7.918 14.97 10.54
8 0.555 8.918 8.708 9.546 1.981 3.270 16.72 14.75
9 0.648 7.606 7.600 11.424 14.876 14.035 10.15 10.03
10 3.157 9.178 8.557 11.272 11.854 11.928 6.38 3.85
11 1.480 5.961 7.164 8.866 10.424 9.212 5.78 5.53
12 3.228 6.795 7.102 10.483 17.704 15.302 23.98 20.01
13 6.140 6.809 7.348 8.614 10.015 9.517 4.40 3.47
14 3.892 6.446 8.000 9.975 10.049 9.193 3.20 8.06

STN

15 5.746 8.133 6.890 10.289 13.303 13.102 10.02 2.94
16 2.850 5.379 7.010 9.241 11.225 10.020 7.54 8.92
17 0.750 8.301 7.427 2.590 7.306 10.810 20.60 8.93
18 2.790 7.107 7.403 2.932 7.484 7.301 13.53 11.03
19 3.490 5.753 7.477 3.818 6.375 5.984 8.66 12.84
20 1.740 4.900 6.324 7.365 7.809 7.538 18.17 19.22
21 2.425 4.768 5.099 5.327 3.613 5.002 23.98 15.78
22 2.748 5.365 7.403 9.933 9.069 9.012 3.34 4.32
23 1.946 4.858 7.708 4.460 7.433 5.016 9.89 5.46
24 1.184 7.275 6.631 3.917 9.196 7.503 12.53 9.20
25 2.239 7.958 8.078 7.451 9.751 9.877 4.99 6.62

VLc

26 0.150 6.426 5.107 2.316 0.567 4.280 11.76 9.07
27 1.715 5.186 5.203 4.893 9.097 8.917 9.18 9.21
28 1.409 7.356 7.210 3.163 7.652 9.302 20.50 16.80
29 7.429 10.001 9.428 5.439 6.436 7.273 5.15 4.70
30 1.366 6.996 7.024 5.728 5.187 8.427 7.78 5.64

AVERAGES 2.827 7.169 7.336 6.777 8.193 8.450 11.11 8.96

10



Fig. 3: Visualisation of the results for Case #11. Planned trajectory Tdql is represented
in yellow, while the reference trajectory Tref is represented in blue.

method for complex scenarios with high-dimensional state and action spaces and its
robustness against local optima. This preliminary research represents an initial step
towards the more challenging problem of multi-electrode planning. Future work will
focus on scaling up and extending the application of DRL to address the high com-
plexity of Stereoelectroencephalography (SEEG) planning, which involves a greater
number of electrodes and intricate targeting objectives.
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