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ABSTRACT

Stereoelectroencephalography (SEEG) is a minimally invasive surgical procedure, used in the treatment of phar-
macoresistant epilepsy to precisely locate areas of the brain where seizures originate. An accurate localization of
SEEG electrodes is crucial to design a resection plan before surgically removing epileptogenic zone. We propose
to train a deep neural network to accurately segment electrode contacts without making any manual adjustments.
We trained a 2D and a 3D version of the U-Net1,2 neural network architecture to handle this task, taking post-
operative CT scans as input. We evaluated our models on 18 image datasets of patients using different metrics,
and provided a comparison of the two approaches. The presented models are robust to electrode bending and
do not need any prior information to make quick and accurate predictions. To the best of our knowledge, deep
learning has not been used yet for this task.

1. INTRODUCTION

Epilepsy is one of the most common serious brain disorders, characterized by an enduring predisposition to
generate epileptic seizures.3 Over 30% of epilepsy patients are pharmacoresistant and for them, the disease
could potentially be cured by surgically removing the epileptogenic zone.4 Prior to the intervention, such zones
must be identified and precisely localized, as they are patient-specific.

Stereoelectroencephalography (SEEG) provides a way to detect the seizure onset zone and hence guide further
surgical decision making. During this procedure, 10 to 18 electrodes are implanted into the patient’s brain. Each
electrode contains between 5 and 18 metallic contacts that record the electrical activity within suspected areas
during a few days.5,6 Surgeons then analyze the signal recorded by each contact. By linking that information
with their spatial localization, they can delineate the epileptogenic zones and choose a resection plan. This is
why an accurate localization of all the implanted electrode contacts is crucial.

Electrode contact segmentation is usually performed manually by neurosurgeons. Having to segment be-
tween 100 and 250 contacts per patient is an extremely time-consuming task which often results in inaccurate
segmentation. One of the challenges is the artefacts that occur when electrodes are placed close to each other.
The difficulty further increases when electrodes are inserted vertically into the brain. To help the neurosur-
geons, several approaches have been proposed to improve and accelerate the segmentation of SEEG electrodes,
saving time and increasing the efficiency of the procedure.7–10 Arnulfo et al.9 suggested an approach based
on a geometrical-constrained search. Meesters et al.10 extracted guiding screws with a multi-scale filter and
determined the possible tip locations inside a wedge-shaped region. This method did not take into account
electrode bending, assuming rigid electrodes. Granados et al.7 suggested a method aiming for an automatic
segmentation of both bolts and contacts. Their contact search strategy was based on the direction of the bolt,
given the distance and angle constraints. The proposed method, however, needs manual adjustments to handle
electrodes crossing. All of these methods use co-registered post-implantation CT scans with pre-implantation
MRI and hence rely on pre-operative plans. Benadi et al.8 developed two interactive and an automatic method
carried out using 3D Slicer platform with post-operative CT scans. The automatic method does not take into
account electrode bending and inaccurately segments contacts that are surrounded by strong artefacts.
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To the best of our knowledge, deep learning has not been used yet for solving the SEEG electrode segmentation
task. However, with the rise of medical imaging, deep learning has encountered significant advances in the field
of machine learning, becoming one of its most successfully used tools. Deep neural networks are being used with
CT and MRI scans and trained for different classification and segmentation tasks, leading to the automation of
tasks that clinicians would otherwise perform manually. In order to improve and automate the process of SEEG
electrode contact segmentation, we propose an approach based on the U-Net1 encoder-decoder architecture
implementing the 2D and the 3D network. The 3D U-Net architecture was first proposed by Çiçek et al.2 Their
network learns from sparsly annotated medical data and provides a dense 3D segmentation.

2. METHODS

2.1 Data Acquisition and Preprocessing

Our dataset consists of postoperative CT scans from 18 different pharmacoresistant epilepsy patients, obtained
at the Department of Neurosurgery of Strasbourg University Hospital. For each patient we have the electrode
implantation planning specifying the total number of electrodes implanted as well as the model of each electrode.
Each CT slice has a resolution of 512× 512 pixels viewed from the axial plane, with the number of slices in each
scan varying between 166 and 259. As border pixels of each slice do not capture any meaningful information,
corresponding to the black background, all slices were cropped to the uniform dimension of 384 × 384 to reduce
memory usage and decrease the computation time. The complete area of the head was preserved after this
operation.

Annotation of the electrode contacts was done manually using the 3D Slicer11 platform and its segmentation
tools. The number of annotated electrode contacts as well as the total number of electrodes annotated was
compared to the planning document to assure a high accuracy of the manual segmentation.

2.2 Electrode Contact Segmentation

To segment SEEG contacts from the post-implantation CT scans, we have implemented a 2D and a 3D variant of
the encoder-decoder symmetric U-Net1,2 architecture. The 3D network is illustrated on Figure 1. The left side
of the symmetric “U” shape is called contracting path and represents a general convolutional process, consisting
of the repeated application of two 3 × 3 convolutions (or 3 × 3 × 3 for the 3D model). Each convolutional layer
is followed by a ReLU activation and batch normalization. Then, spatial dimensions are reduced by applying a
2 × 2 (or 2 × 2 × 2) max pooling operation. The right side of the “U” shape is the expansive path and is built
by upsampling of the feature map followed by a 2× 2 (or 2× 2× 2) transpose convolution, reducing the number
of feature channels by half. At the final layer, a 1× 1 (or 1× 1× 1) convolution is used after which each pixel is
classified either as an electrode contact or a background pixel.

Both networks were trained and tested on the same patient dataset, with slight dimension adjustments for the
3D model due to its heavy memory usage. For the 2D network, the data was organized as 3788 independent CT
slices of dimension 384× 384. For the 3D U-Net, slices were grouped by patient. To fit the data into GPU RAM
memory, the 3D network was trained on smaller patches. Each volume was subdivided into cubes of dimension
96 × 96 × 96. Depending on the total number of CT slices per patient, these volumes were either of dimension
383 × 384 × 192 or 384 × 384 × 288. The initial number of slices for each patient was then either reduced by
removing border slices or, where reduction was not possible due to the loss of useful information, extended by
adding black slices to obtain a dimension divisible by 96.

Training of both networks was done in nearly the same initial hyper parameter set up. To ensure generalization
of the results, both networks were cross validated using the ‘leave-one-out’ approach. In each training phase,
training set consisted of 17 patient data while volume belonging to a single patient was left out to be used for
testing. We used the normalization process for all the CT scans with 0 mean and 1 standard deviation. The
training/validation split for the 2D model was such that 90% of training data were used for training the network,
while the other 10% were used for validation. For the 3D model volume of 1 patient from the training data was
always kept out for validation, while 16 remaining patient volumes were used for training. Validation set is used
to provide an unbiased evaluation of a model on the training dataset while tuning the hyperparameters. For the
entire training process we used Adam optimizer with the initial learning rate set to 1 ∗ 10−5. The loss function



Figure 1. Pre-operative CT slices and the 3D U-Net netwrok architecture.2 The network takes CT slices as input and
returns predicted masks of electrode contacts.

was binary crossentropy. Testing was done on the set of slices belonging to a single patient, unseen during the
training phase. Networks were trained during 150 epochs for each cross-validation fold and evaluated based on
the computation time and accuracy.

3. RESULTS

To validate our methods, we have trained and tested both networks on CT scans from 18 different pharma-
coresistant epilepsy patients, who underwent the SEEG procedure, as described in subsection 2.1. Training
was performed on 4 GPUs, NVIDIA GeForceRTX 2080 Ti, with 4 × 11GB of RAM. Network performance was
evaluated and compared based on 3 different metrics - pixels accuracy, Jaccard index and Dice coefficient. Pixel
accuracy computes the percentage of pixels in an image that are classified correctly. The Jaccard index, also
known as Intersection over Union (IoU), is the area of overlap between the predicted segmentation and the
ground truth divided by the area of union between the two. Dice Coefficient is computed as 2 times the area of
overlap divided by the total number of pixels in the predicted segmentation and the ground truth.

Network performance and above mentioned evaluation metrics were computed and averaged over all folds
after the cross validation. Results are represented in Table 1.

Table 1. 2D U-Net and 3D U-Net network performance after 150-epoch-training performed on 4 NVIDIA GeForceRTX
2080 Ti GPUs. Average results of the 2D and 3D model after leave-one-out cross validation, evaluated and compared on
3 different metrics: pixel accuracy, intersection over union (IoU) and the Dice coefficient.

Model
Training

time
Prediction

time
Test loss Accuracy IoU Dice coefficient

2D U-Net 45 minutes 1.4 seconds 0.0002 0.999 0.704 0.807
3D U-Net 73 minutes 5.6 seconds 0.0002 0.999 0.701 0.806

It is worth noting that SEEG electrode contacts occupy a very small percentage of the entire CT volume.
This, from early on, makes the pixel accuracy very high, not providing too much information on how precise the
prediction really is. Furthermore, this together with the metal artifacts that appear around electrode contacts,
makes manual segmentation highly prone to human error. Here each pixel has a strong impact on the results and
this sensitivity makes it difficult to reach a high Dice coefficient and Jaccard index. Apart from the evaluated
metrics, we analysed where the misclassified pixels come from and discussed how to overcome such these faults.

Figure 2 (a-e) and Figure 2 (f-j) show the predictions obtained with the 2D and the 3D model respectively.
True postivive pixels are represented in green, false positives in red and false negative pixels are displayed in
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Figure 2. Predictions obtained with the 2D (top,a-e) and the 3D model (bottom,f-j). True positive pixels are represented
in green, false positives in red and false negatives in yellow. Most of the contacts are properly segmented by both models
(a-c, e, f-h). In some cases, the 2D model misclassifies artefacts as electrode contacts (d). The 3D model often fails to
classify contacts that coincide with the skull or the screw in the CT scan (i,j).

yellow. Both models correctly segment most of the contacts. As it can be seen in Figure 2d, in some cases the
2D model classifies artefacts as contacts. Using additional information along the 3rd axis, the 3D model (Figure
2i) successfully learns to distinguish between the artefacts and metallic contacts. Both models in some cases fail
to classify contacts close to the screw and skull bone on the CT scan. However, the 2D model classifies such
contacts correctly (Figure 2 d,e) in more cases than the 3D model (Figure 2 i,j).

4. CONCLUSION

In this paper we proposed a method for segmentation of SEEG electrode contacts using the 2D and 3D U-
Net encoder-decoder architecture on post-operative CT scans. Our models have been evaluated on 18 different
patients who underwent the SEEG procedure. We reported high accuracy results for both the 2D and the 3D
model. These networks could segment post-operative CT slices in less than 6 seconds using 4 Nvidia GeForceRTX
2080 Ti GPUs and in less than 85 seconds using a standard PC with Nvidia GeForce GTX 1060. The proposed
solution does not require any prior information about the type nor number of electrodes.

Both models have respective limitations that are overcome by the other: the 2D model is sensitive to artefacts
and finds false positives that the 3D model properly avoids, while the 3D model is less efficient with the most
external contacts that the 2D model properly detects. The proposed models seem to complement each other.
A hybrid network making the most of both models may potentially overcome the above mentioned issues and
should be investigated in future work. Furthermore, we plan to implement a method to group and link together
the contacts belonging to the same electrode.
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