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Abstract Purpose Accurate segmentation of brain resection cavities aids in
postoperative analysis or determining appropriate follow-up treatment. Convo-
lutional neural networks (CNNs) are the state-of-the-art image segmentation
technique, but require large annotated datasets for training. Annotation of
3D medical images is time-consuming, requires highly-trained raters, and may
suffer from high inter-rater variability. Self- and semi-supervised learning can
be used to leverage large amounts of unlabeled data for training.

Methods We developed an algorithm to simulate resections on preopera-
tive magnetic resonance images (MRIs). We curated a new dataset, EPISURG,
comprising 430 postoperative and 269 preoperative MRIs from 430 patients
who underwent resective surgery. We performed unsupervised training of a
3D CNN for resection cavity segmentation, using our resection cavity simula-
tion. We finetuned our model on four small annotated datasets from different
institutions comprising 20, 33, 19 and 133 subjects, respectively. Finally, we

Fernando Pérez-Garćıa – E-mail: fernando.perezgarcia.17@ucl.ac.uk
1Department of Medical Physics and Biomedical Engineering, University College London
(UCL), London, United Kingdom
2School of Biomedical Engineering & Imaging Sciences (BMEIS), King’s College London,
London, United Kingdom
3“C. Munari” Epilepsy Surgery Centre ASST GOM Niguarda, Milan, Italy
4Paris Brain Institute, ICM, INSERM, CNRS, F-75013, Paris, France
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qualitatively evaluated model performance on segmenting resection cavities on
one intraoperative MRI and 13 postoperative brain tumor MRIs.

Results The model trained on unlabeled data obtained median (interquar-
tile range) Dice score coefficients (DSCs) of 81.7 (16.4), 82.4 (36.4), 74.9 (24.2)
and 80.5 (18.7) for each of the four datasets. After finetuning, the DSCs were
89.2 (13.3), 84.1 (19.8), 80.2 (20.1) and 85.2 (10.8). For comparison, inter-
rater agreement between human annotators from our previous study was 84.0
(9.9). Qualitative evaluation on intraoperative MRI and postoperative tumor
resection MRI was promising.

Conclusion We present an unsupervised learning strategy for CNNs using
simulated resection cavities, that can accurately segment real resection cavities
on postoperative MRI. Our method generalizes well to data from different insti-
tutions, pathologies and modalities. Source code, segmentation models and the
EPISURG dataset are available at https://github.com/fepegar/resseg-ijcars.

Keywords Unsupervised learning · Deep learning · Segmentation · Brain
resection · Simulation · Neuroimaging

1 Introduction

1.1 Motivation

Approximately one third of epilepsy patients are drug-resistant. If the epilep-
togenic zone (EZ), i.e., ‘the area of cortex indispensable for the generation of
clinical seizures’ [51], can be precisely localized, resective surgery may be used
to cure the patient by removing the EZ. Currently, only 40% to 70% of pa-
tients with refractory focal epilepsy are seizure-free after resective surgery [28].
This is, in part, due to limitations identifying the EZ. Retrospective studies
relating presurgical clinical features and resected brain structures (such as the
hippocampus or the piriform cortex) to surgical outcome may provide useful
insight to localize and guide resection of the EZ [17]. To quantify the resected
structures, first, the resection cavity must be segmented on the postoperative
magnetic resonance image (MRI). Then, a preoperative image with a corre-
sponding brain parcellation can be registered to the postoperative MRI to
identify resected structures.

Segmentation of the resection cavity is also necessary in other types of
neurosurgery. For example, in the context of neuro-oncology, the gross tumor
volume, which is defined as the sum of the volumes of the resection cavity and
the residual tumor, must be estimated to plan postoperative radiotherapy [13].

After surgery, the resection cavities fill with cerebrospinal fluid (CSF) [63].
This causes an inherent uncertainty in delineating the resection cavity when
adjacent to structures such as sulci, ventricles or edemas, due to a lack of
separating intensity gradient. Moreover, brain shift can occur during surgery,
causing either CSF filling in regions outside of the resection cavity or changes
to the shape and volume of brain structures.

https://github.com/fepegar/resseg-ijcars
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Convolutional neural networks (CNNs) have become the state of the art
for medical image segmentation [55,56]. They have repeatedly shown super-
human accuracy in fully-supervised learning settings using massive annotated
datasets [22]. However, the performance of neural networks trained with fully-
supervised learning using small datasets is often poor. Annotated medical
imaging datasets are often small due to the financial and time burden an-
notating the (often three-dimensional) data, and the need for highly-trained
raters. In self-supervised learning, training instances are generated automati-
cally using unlabeled data from a source domain to learn features that can be
transferred to a target domain [27]. Synthetic data can be generated cheaply
to perform self-supervised training [41]. A good compromise between super-
vised and unsupervised learning is training the neural network using a mix of
labeled and unlabeled data, referred to as semisupervised learning [43]. These
techniques can be used to leverage unlabeled medical imaging data to improve
training in settings where acquiring annotations is time-consuming or costly.

Despite recent efforts to segment resection cavities in the context of brain
cancer [36,23,13], little research has been published in the context of epilepsy
surgery. Furthermore, previous work is limited by the lack of benchmark
datasets, released code or trained models, and evaluation typically being re-
stricted to single-institution datasets used for both training and testing.

1.2 Related works

Changes in brain position, caused by brain shift, remove the possibility of using
symmetry measurements around the sagittal plane to locate the resection cav-
ity. Nonlinear registration has been presented to segment the resection cavity
for epilepsy [8] and brain cancer [5] surgeries by detecting non-corresponding
regions between pre- and post-resection images. However, evaluation of these
methods was limited to only six 3D T1-weighted (T1w) MRIs from a private
dataset and two 2D slices, respectively. Furthermore, in cases where large brain
shift or edemas occur, non-corresponding voxels detected in the image may be
either in the resection cavity or in regions with changes after resection.

Traditional machine learning methods such as decision trees have been used
for brain cavity segmentation from T2-weighted (T2w), fluid-attenuated inver-
sion recovery (FLAIR), and pre- and post-contrast T1w MRI in the context
of glioblastoma surgery [36,23]. These methods aggregate information across
hand-crafted features extracted from different MRI modalities to train clas-
sifiers. These approaches can be sensitive to signal inhomogeneity and have
difficulty distinguishing brain regions with intensity patterns similar to CSF
from resection cavities. Recently, a 2D CNN was trained to segment the re-
section cavity on 2D MRI slices, comprising images from the aforementioned
four modalities, in a cohort of 30 glioblastoma patients [13]. The final 3D seg-
mentation is determined from averaging predictions across the three anatom-
ical axes. They obtained a median (interquartile range) Dice score coefficient
(DSC) of 84 (10) with respect to a ground-truth label obtained by majority
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voting from three independent experts. These methods require four different
modalities to segment the resection cavity. However, some of the modalities
are often unavailable in a clinical setting [10], especially during presurgical
evaluation of epilepsy surgery [11]. Furthermore, code and datasets have not
been made publicly available, which hinders the possibility of performing a
fair comparison across methods. Applying these methods requires curating a
dataset with manually obtained annotations on which to trained the models,
which is expensive.

Self-supervised learning methods have been presented to leverage large,
unlabeled medical image datasets during model training. Unlabeled data are
used to automatically generate training instances which are input to train a
model for the pretext task. The model is then finetuned on a smaller labeled
dataset to perform the desired downstream task [6]. For example, a CNN
was trained to reconstruct a skull bone flap from simulated craniectomy im-
ages [35]. Realistic lesions have been simulated in chest CT of healthy subjects
to train models for nodule detection, improving accuracy compared to training
on smaller datasets containing only real lesions [46].

Semisupervised learning may be used when a large amount of unlabeled
data from the target domain is available. A model is first trained on labeled
data (which might have been self-labeled in a self-supervised setting). Then,
the model can generate pseudolabels for the unlabeled data. Methods for un-
certainty estimation have been presented to select data instances with pseu-
dolabels having a low uncertainty for medical image segmentation tasks [59].

1.3 Contributions

We present a combined self- and semi-supervised learning approach to train a
3D CNN to segment brain resection cavities from T1w MRI without the need
of annotated data. We ensure our work is easily reproducible by publishing
model training code, the trained CNNs, the installable Python package to
simulate resections and the dataset used for evaluation. To the best of our
knowledge, we introduce the first open annotated dataset of postoperative
MRI of epilepsy surgery patients.

We have substantially extended our conference paper [48] as follows:
1. we formalized our transfer learning strategies and generalize our resection

simulation
2. For semisupervised learning, we used uncertainty estimation as a selection

criteria for pseudolabeled instances
3. We performed a more extensive evaluation, including detailed assessment

of the resection simulation components and evaluation of the trained model
for data from different institutions and pathologies.
The rest of this paper is organized as follows: Section 2 describes our pro-

posed framework to simulate brain resections and the unsupervised training
paradigm used for resection cavity segmentation. Section 3 presents experi-
ments to evaluate our proposed method on simulated and real resection data.
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Finally, Section 4 discusses the results and concludes with future directions
and potential applications.

2 Methods

Our learning strategy is based on a self-supervised learning approach, using our
resection simulation method to generate training instances from publicly avail-
able MRI datasets during training (Section 2.1.2). Once trained, this model
may be used to generate pseudolabels on available unlabeled postoperative
images, which can be used to train a new model (Section 2.1.3). The self-
supervised model can also be finetuned to improve performance on small la-
beled datasets from different institutions. A general diagram of these learning
strategies is shown in Fig. 1.

We first define machine learning paradigms used by our learning strategy
in Section 2.1. We introduce our approach to simulate resection cavities on
preoperative MRI in Section 2.2.

2.1 Definitions

A domain D is defined by a feature space X and a marginal probability dis-
tribution P (X), where X = {X1, . . . ,Xn} ∈ X [43]. Given a specific domain,
D = {X , P (X)}, a task comprises a label space Y and a predictive function
f(·) (denoted by T = {Y, f(·)}). f(·) is not observed but learned from training
data composed of pairs (Xi,Yi), where Xi ∈ X and Yi ∈ Y. At test time, f(·)
can be used to predict the corresponding label, Y = f(X), for a new instance
X.

We denote a source domain dataset as DS = {(XSi ,YSi)}
nS
i=1, where XSi ∈

XS is a data instance and YSi ∈ YS is the corresponding label. Similarly,
a target domain dataset is DT = {(XTi

,YTi
)}nT
i=1, where XTi

∈ XT and
YTi

∈ YT. In most cases, nS � nT ≥ 0, i.e., the source domain dataset is
much larger than the target domain dataset.

2.1.1 Transfer learning and domain adaptation

Transfer learning aims to help improve the learning of the target predictive
function fT (·) to perform a target task TT in a target domain DT using a source
domain DS and learning task TS, where DS 6= DT, or TS 6= TT. If the target
and source domains and tasks are the same, i.e., DS = DT and TS = TT, the
learning problem is a traditional fully-supervised machine learning problem.
In transductive transfer learning, the target and source domains are different
(but related) and the tasks are the same, i.e., DS 6= DT and TS = TT. In
domain adaptation, the gap between source and target domains is reduced in
the raw feature space or in a latent space. A function ψ : DS → DS′ ≈ DT
may reduce the domain gap.
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Fig. 1: Learning strategy. 3D images without resections (top left) are used
with our resection simulation method to generate training instances. These
instances are used to train a baseline model in a self-supervised manner (mid-
dle). The baseline model is used to generate pseudolabels from an unlabeled
dataset of images from patients who underwent resective surgery (bottom left).
Instances from the self-supervised training and pseudolabeled data are used
to train new model in a self- and semi-supervised learning setting (left). The
baseline model may be finetuned to improve its performance on small labeled
datasets of real resections from a single institution, using a standard fully-
supervised learning approach (right).

2.1.2 Self-supervised learning

Unsupervised learning refers to any learning method without human-annotated
labels. In self-supervised learning, there is a large source dataset without
labels and a smaller target dataset with labels, i.e., DS = {XS1}

nS
i=1 and

DT = {(XTi
,YTi

)}nT
i=1. The goal is to generate a model f(·) leveraging knowl-

edge from DS to perform the downstream task TT by generating an interme-
diate dataset DS′ = {(XS′

i
,YS′

i
)}n

′
S
i=1 using a function φ : XS → {XS′ ,YS′}.

Typically, some information from XS is withheld to generate a training in-
stance (XS′ ,YS′). YS′ can be used to define a pretext task TS′ to train the
model fS′(·). Finally, fS′(·) may be finetuned on DT to perform the down-
stream task TT if labeled data is available. We denote f̃AB(·) as the model
initially trained on a source domain DA and finetuned on a target domain DB.

2.1.3 Semisupervised learning

In a semisupervised learning setting, we assume the presence of a labeled
dataset DA = {(XAi

,YAi
)}nA
i=1 and an unlabeled dataset DB = {XBi

}nB
i=1

from two similar domains DA and DB. As manual annotations are expensive,
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typically nA � nB. A predictive model fA(·) is trained using DA. This model
can then be used to generate pseudolabels from DB, creating a new dataset

D′B = {(XBi
, fA(XBi

))}n
′
B
i=1 = {(XBi

, ỸBi
)}n

′
B
i=1 (1)

The reliability of the pseudolabeled instances may be assessed by estimat-
ing the prediction uncertainty u(f ′A,XB, N), and only instances considered
reliable enough will be included in D′B, therefore n′B ≤ nB. f ′A is a predictive
function with stochastic behaviour modified. The stochastic behaviour can be
derived from test-time augmentation (TTA) [61], where a transformation is
applied to XB before (and sometimes after) prediction, or test-time dropout
(TTD) [12], where weights in fA are randomly zeroed [57]. N is the number
of iterations used to estimate the uncertainty.

Finally, a new model fAB is trained on DA ∪D′B and evaluated on a test
dataset.

2.2 Resection simulation for self-supervised learning

Let DC be the domain corresponding to brain MRI of subjects without a resec-
tion cavity (controls) and DP the domain corresponding to real postoperative
images (with a resection cavity). To reduce the domain gap between DC and
DP, we present a function φR : XC → {XR,YR} ' {XP,YP } that takes XC,
the MRI of a control subject, and generates a training instance (XR,YR) com-
posed of an image with a simulated resection cavity and a corresponding label
map representing the cavity segmentation. φR generates the training instance
using a shape model to determine the location of the resection cavity and a
texture model to simulate realistic patterns inside and around the cavity. In-
stances from DR are generated to train a resection cavity segmentation model
fR(·). Within our framework, we expect DR to approximately model DP and
therefore fR = fP.

In the following sections, we will use definitions and notation from [48] to
describe the image processing steps used for φR. We present the tools related
to shape and texture generation in Sections 2.2.1, 2.2.2 and 2.2.4. We describe
how φR is applied to control subjects in Sections 2.2.3 and 2.2.5 to 2.2.7.

2.2.1 Initial cavity shape perturbed with simplex noise

To simulate a realistic resection cavity, we considered the properties of resec-
tions: the cavity is a single, continuous volume whose shape is generally not
be smooth. We first generate a geodesic polyhedron with frequency f by sub-
dividing the edges of an icosahedron f times and projecting each vertex onto
a parametric sphere with a unit radius. This polyhedron models a spherical
surface S = {V, F} with vertices V =

{
vi ∈ R3}nV

i=1 and faces F = {fk}nF

k=1.
Each face fk = {ik1 , ik2 , ik3} is defined as a sequence of three non-repeated vertex
indices. S is centered at the origin.
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To create a non-smooth surface, S is perturbed with simplex noise [45], a
smooth procedural noise generated by interpolating pseudorandom gradients
defined on a multidimensional simplicial grid. We chose this type of noise as it
simulates natural-looking textures or terrains and is computationally efficient
for multiple dimensions.

The noise at point p ∈ R3 is a weighted sum of the noise contribution
at ω different octaves, with weights γn−1 : n ∈ {1, 2, . . . , ω} controlled by
the persistence parameter γ. The displacement δ : R3 → [−1, 1] in mm is
proportional to the noise function ξ : R3 → [−τ, τ ]:

δ(p) = τξ

(
p+ µ
ζ

, ω, γ

)
(2)

where τ controls the noise amplitude, ζ is a scaling parameter to control
smoothness and µ is a shifting parameter that adds stochasticity (equivalent
to a random number generator seed).

Each vertex vi ∈ V is displaced radially:

vδi = vi + δ(vi)
vi
‖vi‖

, ∀i ∈ {1, 2, . . . , nV } (3)

to create a perturbed sphere Sδ = {Vδ, F} with vertices Vδ = {vδi}nV

i=1.
Next, a series of transforms is applied to Sδ to modify its volume, shape and

position, as follows. Let TT(p), TS(s) and TR(θ) be translation, scaling and
rotation transforms. Random rotations around each axis are applied to Sδ with
the rotation transform TR(θr) = Rx(θx) ◦ Ry(θy) ◦ Rz(θz), where ◦ indicates
a transform composition, Ri(θi) is a rotation of θi radians around axis i, and
θi ∼ U(0, 2π). A scaling transform TS(r) is applied to Sδ, where (r1, r2, r3) = r
are the semiaxes of an ellipsoid with volume v modeling the cavity shape. The
semiaxes are computed as r1 = r, r2 = λr and r3 = r/λ, where r = (3v/4)1/3

and λ controls the semiaxes length ratios1. The transforms are composed as
TE = TS(r) ◦ TR(θr) and applied to Sδ to obtain the resection surface SE =
TE ◦ Sδ. This will define the volume and extent of the initial resection cavity
surface SE.

2.2.2 Shape restrictions

Let MA : Ω → {0, 1} be a binary image where positive voxels are candidates
for the center of a mesh surface S0, centered at the origin. LetMB : Ω → {0, 1}
be a binary image that will restrict the final shape, where Ω ∈ R3.

We define a function ξ(MA,MB, S0) that returns an image MR represent-
ing the shape S0 centered on a positive voxel from MA, restricted by positive
voxels in MB.

ξ(·) is computed by first selecting a random voxel a such that MA(a) = 1.
Next, a translation transformation TT(p) is defined to translate a point by p.

1 Note the volume of an ellipsoid with semiaxes (a, b, c) is v = 4
3πabc.
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(a) SA on MA (b) SA on MB (c) MR = MSA
�MB

Fig. 2: Example of processing steps in ξ(MA,MB, S0). SA is derived from S0
and is centered on a random positive voxel of MA (a). MSA

is a binary mask
derived from SA. Then, the intersection of MSA

and MB (b) is computed to
get MR (c)

This transformation is applied to S so that SA = TT(a) ◦S is centered on the
randomly chosen voxel.

A binary imageMSA
: Ω → {0, 1} is generated from SA such thatMSA

(p) =
1 for all p within SA and MSA

(p) = 0 outside. Finally, MSA
is restricted by

MB so that MR = MSA
�MB, where � represents the Hadamard product.

Fig. 2 shows an example of the process.

2.2.3 Ensuring the cavity stays within the brain

A T1w MRI is defined as XC : Ω → R. A full brain parcellation P : Ω → Z
is generated [4] for XC, where Z is the set of segmented brain structures. A
cortical gray matter maskMh

GM : Ω → {0, 1} of hemisphere h is extracted from
P , where h is randomly chosen from H = {left, right} with equal probability.

The simulated resection cavity should not span both hemispheres or include
extracerebral tissues such as bone or scalp. To eliminate unrealistic regions,
a ‘resectable hemisphere mask’ is generated from P and h as Mh

R(p) = 1 if
P (p) 6= {MBG,MBT,MCB,Mĥ} and 0 otherwise, where MBG, MBT, MCB and
Mĥ are the sets of labels in Z corresponding to the background, brainstem,
cerebellum and contralateral hemisphere, respectively. Mh

R is smoothed using
a series of binary morphological operations. The cavity label is then computed
by Ycavity = ξ(Mh

GM,M
h
R, SE) (see Section 2.2.2 and Fig. 2).

2.2.4 Image blending for realistic texture simulation

Let XA : Ω → R and XB : Ω → R be two scalar-valued images. We use a
binary image Mα : Ω → {0, 1} to determine how to blend XB into XA as
follows. A Gaussian filter is applied to Mα to obtain a smooth alpha channel
Aα : Ω → [0, 1] defined as Aα = Mα ∗ GN (σ), where ∗ is the convolution
operator and GN (σ) is a 3D Gaussian kernel with standard deviations σ =
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(a) XA (b) Mα (c) Aα

(d) XB (e) α(XA,XB,Mα, 0) (f) α(XA,XB,Mα, 5)

Fig. 3: Example of processing steps in α(XA,XB,Mα,σ). Two scalar-valued
images XA (a) and XB (d) are blended using Mα (b) and σi = 0 mm to create
a mix with hard boundaries (e) and σi = 5 mm (c) to create a mix with soft
boundaries (f), mimicking partial-volume effects

(σx, σy, σz) mm. Then, the two images are blended by the convex combination

XAB = Aα �XB + (1−Aα)�XA (4)

We indicate this texture blending process by α(XA,XB,Mα,σ) (Fig. 3).

2.2.5 Simulating cavities filled with CSF

Brain resection cavities are normally filled with CSF. To generate a realistic
CSF texture, we create a ventricle mask MV : Ω → {0, 1} from P , such that
MV(p) = 1 for all p within the ventricles and MV(p) = 0 outside. Intensity
values within ventricles are assumed to have a normal distribution [20] with
a mean µCSF and standard deviation σCSF calculated from voxel intensity
values in XC(p) : ∀p ∈ Ω where MV(p) = 1. A CSF-like image is then
generated as XCSF(p) ∼ N (µCSF, σCSF),∀p ∈ Ω, and the resected image is
Xcavity = α(XC,XCSF,Ycavity,σcavity) (see Section 2.2.4). We use σcavity > 0
to mimic partial-volume effects at the resection boundaries.
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(a)

(b)

(c)

Fig. 4: Three subjects with white matter hypointensity around the resection
cavity. Representative axial (left), sagittal (middle) and coronal (right) slices

2.2.6 Hypointense white matter lesion

Retraction injury from resective surgery may cause ischemic changes and de-
generation of white matter. These lesions typically cause white matter hy-
pointensity around the resection cavity (Fig. 4).

To simulate a white matter lesion, we first resize the binary image corre-
sponding to the resection cavity (Section 2.2.1): MWM = TS(sWM) ◦ Ycavity,
where TS(sWM) is an isotropic scaling transform that will increase the size of
the binary component in Ycavity corresponding to the cavity by a factor of
sWM. Then, a Gaussian kernel with a large standard deviation σWM is used to
generate a simulated white matter lesion:X ′WM = α(XC,XCSF,MWM,σWM).
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(a) XC (b) X′
WM (c) XWM (d) XWM,cavity

Fig. 5: Simulation of postoperative white matter lesions. The binary image
representing the cavity (blue) is scaled up (red) (a). A CSF-like image is
blended with the MRI using a large standard deviation for the Gaussian kernel
(b). The lesion is restricted so that it affects only the white matter (c). The
cavity is added as explained in Section 2.2.1 (d)

For realism, we restrict the simulated lesion to the white matter voxels
only. We use P to generate a white matter mask Mh

WM and blend X ′WM
with the original image: XWM = α(XC,X

′
WM,M

h
WM,σGM). Finally, we sim-

ulate the resection cavity on XWM, similar to Section 2.2.1: XWM,cavity =
α(XWM,XCSF,Ycavity,σcavity). The process is illustrated in Fig. 5.

2.2.7 Hyperintense blood products

Hyperintense postoperative blood products are often found in brain resection
cavities (Fig. 6).

To simulate these hyperintensities, we first generate a perturbed sphere
SBP (Section 2.2.1), resize it using a random scaling transform TS(sBP) and
apply a random rotation TR(θBP) to obtain the final shape SBP. To ensure
that blood products are not in contact with tissue outside the resection cavity,
we erode Ycavity to obtain Y ′cavity, which is used to restrict SBP. The blood
product binary image is MBP = ξ(Y ′cavity,Y

′
cavity, SBP) (see Section 2.2.2).

To simulate the hyperintense texture, we generate a new image XBP ∼
N (µBM, σCSF). We typically choose µBM to be a high percentile of the intensity
values in XC. The simulated resection cavity including a blood product is
Xcavity,BP = α(Xcavity,XBP,MBP,σBP).

2.3 Leveraging unlabeled images for semisupervised learning

2.3.1 Data distillation

Data distillation is a method that ensembles predictions from multiple trans-
formations applied to data, using a single model, to generate pseudolabels [50].
We perform Monte Carlo simulation to generate each pseudolabel using TTA,
as this method is known to improve the performance of segmentation mod-
els [40]. Let N represent the total number of simulation runs. In the n-th
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(a)

(b)

(c)

Fig. 6: Three subjects with postoperative blood products inside the resection
cavity. Representative axial (left), sagittal (middle) and coronal (right) slices

simulation run, a trained model f(·) is used to compute the probability that
each voxel in an MRI X represents a resection cavity:

Y ′n = T−1
β [f (Tβ(Tα(X)))] = fαβ(X) (5)

where the TTA transforms Tα and Tβ represent the intensity and spatial
transforms used for data augmentation during training, respectively (see Sec-
tion 3.3.2), and fαβ represents the composition of the transforms and the
trained model. We ensure that Tβ is invertible by using diffeomorphic spa-
tial transformations. To preserve image quality and ensure that probabilities
stay within [0, 1], we use tricubic and trilinear interpolation for Tβ and T−1

β ,
respectively.
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The predictions are then averaged to obtain Y ′ : Ω → [0, 1]

Y ′ = 1
N

N∑
n=1

Yn (6)

and the corresponding binary pseudolabel Ỹ : Ω → {0, 1} is obtained applying
a threshold of 0.5 to Y ′.

2.3.2 Uncertainty estimation

To ensure that only pseudolabels with high reliability are used for training, we
estimate the subject-level prediction uncertainty u(fαβ ,X, N) (Section 2.1.3).
We use the N TTA predictions to estimate aleatoric uncertainty, which is ex-
pected to capture noise inherent in the observation [30]. Aleatoric uncertainty
has been shown to be a good indicator of segmentation quality and used suc-
cessfully as a selection criterion for pseudolabels in semisupervised learning
settings for medical image segmentation [61,59]. Moreover, it can be used to
inform users about the reliability of the inferred segmentations.

For N samples from the Monte Carlo simulation, let L = {ln}Nn=1 denote
the set of (soft) volumes of the segmented cavity, where ln is the sum of all
probabilities in the result of the n-th sample Y ′n. We use the coefficient of
quartile variation (CQV) of the volumes [65,61] to estimate the image-level
uncertainty u : L→ [0, 1]:

u = q3 − q1

q3 + q1
(7)

where q1 and q3 are the first and third quartiles of L, respectively. The CQV
is agnostic to the volume of the segmented resection cavity and therefore cir-
cumvents the bias introduced by naturally-occurring uncertainty along the
resection boundaries [29]. A threshold tu is used to select images with low
uncertainty that will be added to the self-supervised dataset for the semisu-
pervised setting.

3 Experiments and results

3.1 Data

The datasets we used for experiments are summarized in Table 1.

3.1.1 Public data for simulation

T1w magnetic resonance (MR) images were collected from publicly available
datasets Information eXtraction from Images (IXI)2, Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [26], and Open Access Series of Imaging Studies
(OASIS) [32], for a total of 1813 images.

2 https://brain-development.org/ixi-dataset/

https://brain-development.org/ixi-dataset/
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Table 1: Datasets used in this study. If multiple resolutions are present, the
minimum, mean and maximum along each dimension are shown. ‘Gad’ indi-
cates that gadolinium, a contrast enhancement agent, was used

Dataset Modality Resolution (mm) Subjects Surgery Annotated

IXI T1w
0.94× 0.94× 1.20

566 - -0.94× 0.94× 1.20
0.98× 0.98× 1.20

ADNI T1w 1.00× 1.00× 1.00 467 - -

OASIS T1w
1.00× 1.00× 1.00

780 - -1.05× 1.01× 1.02
1.20× 1.05× 3.00

EPISURG T1w
0.75× 0.75× 0.75

430 Epilepsy 1330.96× 0.96× 1.08
1.09× 1.09× 1.60

Milan T1w 0.46× 0.46× 0.90 20 Epilepsy 20

Strasbourg T1w & T1w Gad
0.23× 0.23× 0.50

33 Epilepsy 330.61× 0.61× 2.79
1.00× 1.00× 5.00

Paris T1w
0.47× 0.47× 0.49

19 Epilepsy 190.82× 0.76× 1.06
1.20× 0.98× 1.20

BITE T1w Gad
1.00× 0.47× 0.47

13 Tumor 02.31× 0.53× 0.53
5.50× 0.55× 0.55

For self-supervised learning, publicly available data is used to build a
dataset DC = {XC1}

nC
i=1 corresponding to control subjects (Section 2.1). Note

that we use the term ‘control’ to refer to subjects that have not undergone re-
sective surgery, but they may have other neurological conditions. For example,
subjects in ADNI suffer from Alzheimer’s disease.

3.1.2 EPISURG dataset

We curated the EPISURG dataset using images from patients with refractory
focal epilepsy who underwent resective surgery between 1990 and 2018 at the
National Hospital for Neurology and Neurosurgery (NHNN), London, United
Kingdom. This was an analysis of anonymized data that had been previously
acquired as a part of clinical care, so individual patient consent was not re-
quired. All images in EPISURG were defaced using a predefined face mask in
the Montreal Neurological Institute (MNI) space to preserve patient identity.
In total, there were 430 patients with postoperative T1w MRI, 269 of which
had a corresponding preoperative MRI. The distribution of resection types is
shown in Table 2.

Annotations used for evaluation in this study were performed semiauto-
matically using a fast grow-cut algorithm implemented in 3D Slicer 4.10 [64,
14]. EPISURG is available online and can be freely downloaded for future
research [47].
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Table 2: Distribution of resection types in EPISURG

Lobe Type Subjects

Temporal lobectomy 317
Temporal lesionectomy 30
Temporal-frontal lobectomy 2
Temporal-parietal lobectomy 1
Frontal lobectomy 47
Frontal lesionectomy 10
Parietal lesionectomy 11
Parietal lobectomy 4
Occipital-parietal lobectomy 2
Occipital lobectomy 2
- multiple subpial 2
- hemispherectomy 2

Total 430

3.1.3 Multicentric epilepsy data

We evaluate the generalizability of our learning strategy to data from sev-
eral institutions (Milan, Strasbourg, Paris) that may use different acquisition
protocols and surgical approaches. The same human rater (F.P.G.) annotated
all images shared by these institutions using the same protocol as used for
EPISURG.

3.1.4 Brain tumor datasets

The Brain Images of Tumors for Evaluation (BITE) dataset [37] consists of
T1w MRI with gadolinium contrast enhancement (T1wCE) of 13 patients with
brain tumors3. We use the postoperative images in BITE to perform a quali-
tative assessment of the potential of our models to generalize to images from
a substantially different domain (as images in BITE are contrast-enhanced)
and different pathology and, therefore, potentially different surgical techniques
that may effect the resection cavity appearance.

3.1.5 Preprocessing

For all images, the brain was segmented using ROBEX [24]. Voxels within the
brain were used to register the images to the nonlinear symmetric ICBM152
MNI template [15,16] using a pyramidal approach to compute the affine trans-
formation [39]. All images were resampled into the MNI space using sinc in-
terpolation to preserve image quality. After resampling, images had a 1-mm
isotropic resolution and size 193× 229× 193.

3 We only use the postoperative images from group 3.
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3.2 Network architecture and implementation details

We used the PyTorch deep learning framework [44], training with automatic
mixed precision (AMP) on two 32-GB TESLA V100 GPUs.

We implemented a variant of 3D U-Net [9] using two downsampling and
upsampling blocks, upsampling with trilinear interpolation for the synthesis
path, and 1/4 of the filters for each convolutional layer. We used dilated convo-
lutions [7], starting with a dilation factor of one, then increased or decreased
in steps of one after each downsampling or upsampling block, respectively.
This results in a model with the same receptive field (a cube of length 88 mm)
but ≈ 77× fewer parameters (246 156) than the original 3D U-Net, reducing
overfitting and computational burden.

He initialization was used for all convolutional layers, followed by batch
normalization and nonlinear PReLU activation functions [25,22] A dropout
layer with probability 0.5 [57] was added before the last convolutional layer to
reduce overfitting and estimate epistemic uncertainty. We used adaptive mo-
ment estimation (AdamW) [31,33] to adjust the learning rate during training,
with weight decay of 10−2, and a learning scheduler that divides the learning
rate by 10 every 20 epochs. We optimized our network to minimize the mean
soft Dice loss [38] of each minibatch, for all the experiments. A minibatch size
of 10 images (5 per GPU) was used for training. Unsupervised training took
about 27 hours. Finetuning on a small annotated dataset took about 7 hours.

We used Sacred [19] and TensorBoard [1] to configure, log and visualize
our experiments.

3.3 Processing during training

3.3.1 Resection simulation

We perform the resection simulation on the fly, i.e., during training. Simula-
tion requires 0.6 to 2.2 s for a image of size 193× 229× 193, depending on the
addition of white matter lesions and blood products (Sections 2.2.6 and 2.2.7).
In practice, we perform expensive operations such as convolutions on subvol-
umes to reduce computational burden. The simulation is implemented using
SimpleITK [34], VTK [52] and NumPy [60]. To generate the noisy sphere, we
used pyDome4 and noise5.

3.3.2 Preprocessing and augmentation

We use TorchIO transforms to load, preprocess and augment our data dur-
ing training [49]. Instead of preprocessing the images with denoising or bias
removal, we simulate different artifacts so that our models are robust to them.

4 https://github.com/badassdatascience/pyDome
5 https://github.com/caseman/noise

https://github.com/badassdatascience/pyDome
https://github.com/caseman/noise
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Our preprocessing and augmentation transforms are described below. For
transforms that are not applied to all images, we show the probability p of the
transform being applied.

1. Random resection simulation (for self-supervised training only)
2. Histogram standardization [42]
3. Simulation of low resolution artifacts (p = 0.75). Sampled uniformly from

(a) Random simulation of anisotropic spacing [2] and
(b) Gaussian blurring with random variance

4. Random simulation of MRI ghosting artifacts [54] (p = 0.2)
5. Random simulation of MRI spike artifacts [54] (p = 0.2)
6. Random simulation of MRI motion artifacts [53] (p = 0.2)
7. Random simulation of bias field inhomogeneity [58] (p = 0.5)
8. Standardization to zero-mean and unit variance using only voxels with

intensity above the mean to compute the statistics
9. Gaussian noise with random variance (p = 0.75)

10. Diffeomorphic spatial transform, sampled with probabilities 0.9 and 0.1
from

(a) Random rotation and anisotropic scaling and
(b) Random elastic deformation

11. Random flip around the sagittal plane (p = 0.5)
12. Crop images using a tight bounding box around the brain, to a size of

176× 216× 160 voxels.

We refer the reader to the GitHub repository for a detailed inspection of
the transforms parameters used for our experiments.

3.4 Experiments

All overlap measurements are expressed as ‘median (interquartile range)’ DSC.
No postprocessing is performed for evaluation. We analyzed differences in
model performance using a one-tailed Mann-Whitney U test (as DSCs were
not normally distributed) with a significance threshold of α = 0.05, and a
Bonferroni correction for each set of N experiments: αBonf = α

N×(N−1) .

3.4.1 Self-supervised learning: training with simulated resections only

In our first experiment, we assess the relation between the complexity of the
resection simulation and segmentation performance. We train using simulated
resections on the publicly available dataset DC = {XCi

}nC
i=1, where nC =

1813 (Section 3.1). We use 90% of the images in DC for the training set
DCtrain = {XCi}

nCtrain
i=1 and 10% for the validation set DCval = {XCi}

nCval
i=1

(nCtrain = 1632 and nCval = 181). The 133 annotated postoperative images in
EPISURG are used for evaluation.

Before training, we precompute and cache a validation set

DRval = {TAug ◦ φR(XCi
)}nCval
i=1 = {(XRi

,YRi
)}nCval
i=1 (8)
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Table 3: Quantitative evaluation on the annotated images in EPISURG of
models trained with simulated resections only. DSCs are expressed as ‘median
(interquartile range)’

White matter lesion Blood products Cavity shape DSC

No No Cuboid 57.9 (73.1)
No No Ellipsoid 79.0 (20.0)
No No Noisy 80.5 (18.7)
No Yes Noisy 79.6 (16.5)
Yes No Noisy 78.2 (20.3)
Yes Yes Noisy 78.0 (18.0)

(a) (b) (c)

Fig. 7: Simulation of resection cavities with increasing shape complexity:
cuboid (a), ellipsoid (b) and ellipsoid perturbed with simplex noise (c)

where φR is the resection simulation described in Section 2.2 and TAug repre-
sents the preprocessing and augmentation described in Section 3.3.2.

At each training iteration, b images from DCtrain are loaded, resected,
preprocessed and augmented to obtain a mini-batch of b training instances
{(XRi

,YRi
)}bi=1. Note that the resection simulation is performed on the fly,

which allows us to ensure that the network never sees the same resection twice.
All models were trained for 60 epochs, using an initial learning rate of

10−3. We use for evaluation the model with the lowest mean validation loss
obtained during training.

Effect of resection shape To investigate the effect of the simulated cavity shape
on the model performance on real data, we modify φR to generate cuboid-
(Fig. 7a) or ellipsoid-shaped (Fig. 7b) resections, and compare the performance
with the baseline simulation of a ‘noisy’ ellipsoid (Fig. 7c). The cuboids and
ellipsoid meshes are not perturbed using simplex noise, and cuboids are not
rotated. The performance of the baseline model is only marginally better than
the model trained with rotated ellipsoids (p = 0.123) (Table 3). The model
trained with cuboid-shaped resection cavities performed significantly worse
than the baseline model (p < 10−8).

Effect of resection texture We investigate the effect of simulating additional
postoperative phenomena such as white matter lesions around the cavity and
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(a) (b) (c) (d)

Fig. 8: Simulation of resection cavities with increasing texture complexity:
baseline (a), blood products (b), white matter lesion (c) and both (d)

blood products inside (Fig. 8). Adding either of these effects did not improve
results, but the superiority of the baseline model with respect to the models
trained with white matter lesions (p = 0.163), blood products (p = 0.323) or
both (p = 0.054) was not statistically significant.

3.4.2 Finetuning on small clinical datasets

We assess the generalizability of our baseline model by finetuning it using small
datasets from different institutions, with different scanners, voxel resolution
and acquisition protocols. Additionally, we finetune the model on 20 cases from
EPISURG with the lowest DSC (Section 3.4.1).

For each dataset, we load the pretrained baseline model, initialize the op-
timizer with an initial learning rate of 5 · 10−4, initialize the learning rate
scheduler and finetune all layers simultaneously for 40 epochs using 5-fold
cross-validation. We use model weights from the epoch with the lowest mean
validation loss for evaluation. To minimize data leakage, we chose the above
hyperparameters using the validation set of one fold in the Milan dataset.

We observed a consistent increase in DSC for all finetuned models, up to
a maximum of 89.2 (13.3) for the Milan dataset. For comparison, inter-rater
agreement between human annotators in our previous study was 84.0 (9.9) [48].

Quantitative and qualitative evaluations are illustrated in Figs. 9 and 10,
respectively.

3.4.3 Semisupervised learning: leveraging real unlabeled resections

We assess the ability of semisupervised learning to improve the performance of
our baseline model. We first computed uncertainty u(fαβ ,X, N) (Section 2.3.2)
for all unlabeled images in EPISURG DR = {XRi

}nR
i=1, where nR = 297

(Fig. 11), using the baseline model and the transforms used for preprocessing
and augmentation Section 3.3.2. We generated pseudolabels using data distil-
lation (Section 2.3.1) for all images in DR with u(XRi , ·) < 0.2 (Fig. 11a) to
obtain DP = {(XPi

, ỸPi
)}nP
i=1, where nP = 256. We computed uncertainty and

generated the pseudolabels from 50 Monte Carlo TTA iterations (Fig. 11e).
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Milan (20) Paris (19) Strasbourg (33) EPISURG (133) EPISURG (worst) (20)
Dataset for finetuning
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Fig. 9: DSC before (blue) and after (orange) finetuning the self-supervised
model on datasets from different institutions. Horizontal lines in the boxes
represent the first, second (median) and third quartiles. Numbers in parenthe-
ses represent the number of subjects in each dataset

Low → high DSC

High → low DSC

Low → low DSC

High → high DSC

DSC 26.7 DSC 61.1

DSC 91.2DSC 91.2

DSC 60.6 DSC 63.7

DSC 67.3 DSC 61.4

DSC 35.3 DSC 78.6

DSC 93.0 DSC 94.1

DSC 62.6 DSC 60.8

DSC 80.5 DSC 70.4

Before fine-tuning After fine-tuning Before fine-tuning After fine-tuning

Fig. 10: Qualitative evaluation of finetuning for the Strasbourg (left) and
EPISURG (right) datasets. Rows correspond, from top to bottom, to cases
for which the DSC 1) became much higher, 2) remained high, 3) remained low
and 4) became much lower after finetuning the self-supervised model. Manual
annotations (green) and thresholded model predictions (magenta) are overlaid.
For interpretation of this figure, the reader is referred to the web version of
this article
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Fig. 11: Generating reliable pseudolabels for semisupervised learning. Image-
level uncertainty for the 297 unlabeled postoperative images in EPISURG (a).
For each subject, probabilities for the resection cavity are generated from an
MRI (b) using 50 TTA Monte Carlo iterations. The voxel-wise uncertainty (c)
is estimated as the standard deviation of the probabilities across all iterations.
The mean prediction (d) is thresholded at 0.5 to generate the pseudolabel (e)
used for semisupervised learning. Image-level uncertainties for the three cases
are 0.805 (top), 0.195 (middle) and 0.025 (bottom)

We used the self-supervised training dataset DCtrain in addition to DP
to train a new model fP(·), using the same hyperparameters as in the self-
supervised setting (Section 3.4.1). To ensure that all batches contain real re-
sections, we use b−bP images from DCtrain and bP images from DP to compose
each minibatch of size b. We chose bP = 2 for our experiments.

Semisupervised learning improved the performance of the baseline model
from 80.5 (18.7) to 81.5 (17.8) (p = 0.474).

3.4.4 Qualitative evaluation on brain tumor resection dataset

We used the BITE dataset [37] to evaluate the ability of our self-supervised
model to segment resection cavities on images from a different institution,
modality and pathology with respect to the datasets used for quantitative
validation. Probabilities were thresholded at 0.5 and all but the largest binary
connected component were removed.

The model was able to successfully segment the cavity on 11/13 images,
even though some presented challenging features (Fig. 12).
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(a)

(b)

(c)

(d)

Fig. 12: Qualitative evaluation of the self-supervised model on a dataset of
postoperative brain tumor T1wCE MRI. The model is robust to multiple chal-
lenging scenarios: low contrast between the cavity and the brain (a), air and
CSF within the resection cavity (b), highly anisotropic resolution (c), motion
artifacts and edema (d), and different modality to the one used for training
(all)

3.4.5 Qualitative evaluation on intraoperative image

We used our baseline model to segment the resection cavity on a preoperative
MRI. Despite the large domain shift between the training dataset and the in-
traoperative image, which includes a retracted skin flap and a missing bone
flap, the model was able to correctly estimate the resection cavity segmenta-
tion, discarding other similar regions filled with CSF or air (Fig. 13).
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Fig. 13: Qualitative result on an intraoperative MRI. The baseline model cor-
rectly discarded regions filled with air or CSF that do not correspond to the
resection cavity

4 Discussion and conclusion

This work addresses the challenge of segmenting postoperative brain resection
cavities from T1w MRI without using annotated data. The main contribu-
tions are 1) a method to simulate resection cavities on normal MRI, 2) a
learning strategy using the resection simulation to train without annotated
data and 3) a large annotated dataset of pre- and post-operative MRI of re-
fractory epilepsy patients. Our novel approach is conceptually simple, easy
to implement and relies on assumptions based on clinical knowledge about
postoperative phenomena. The resection simulation is fast enough that it can
be executed during training. The trained models do not require any prepro-
cessing such as denoising or bias field correction, thanks to our substantial
data augmentation including simulation of multiple MRI artifacts. Moreover,
in contrast with related works, we did not perform skull-stripping as it would
be affected by the resection cavity. This is especially true in the context of
epilepsy surgery, as the EZ is always located in the cortical gray matter and
therefore all resections partially overlap with this brain region.

Model performance is poor when the simulated cavities are cuboids, and
best results were obtained using ellipsoids perturbed with procedural noise.
This indicates that modelling a realistic cavity shape is important, and there
is room for improvement by optimizing the hyperparameters of the resection
simulation. While the addition of simulated white matter lesions and blood
products did not improve model performance, we believe our approach can
be easily extended to simulate other objects such as air within the cavity or
residual tumors, which would improve performance in the context of brain
cancer surgery [13].

Our model generalizes well to clinical data from different institutions and
pathologies such as epilepsy and glioma, and may be easily finetuned using
small annotated clinical datasets to further improve performance. Moreover,
our resection simulation and learning strategy may be trivially extended to
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train with arbitrary modalities, or with synthetic modalities generated from
brain parcellations [2].

The main causes of failure are very small cavities, where the cavity was
not detected, and large brain shift or subdural edema, where this regions were
incorrectly classified as resection cavities. The former issue may be overcome
using curriculum learning [21], i.e., training using increasingly challenging in-
stances, which can be performed by modifying the hyperparameters of the
resection simulation and data augmentation during training. The latter can
be addressed by extending our method to simulate these phenomena using
biomechanical brain models and nonlinear deformation [18].

We demonstrated that uncertainty estimates may be used as a selection
criterion for pseudolabeled images in a semisupervised learning pipeline, and
to inform users of segmentation reliability. Our strategy can be adopted by
institutions with a large amount of unlabeled data which can be for training,
while finetuning and testing may be performed on a smaller labeled dataset.

We showed that our model correctly segmented an intraoperative image,
respecting imaginary boundaries between brain and skull, suggesting a good
inductive bias of human neuroanatomy. Qualitative results and execution time
(< 1 s) suggest that our method could be used intraoperatively to improve
registration with preoperative images by masking the cost function using the
resection cavity segmentation [3,62].

We curated and release EPISURG, hoping that it will serve as a benchmark
dataset for quantitative assessment of resective neurosurgery.
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