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Abstract—Over the past two decades, an evolutionary effort
has been established in the agricultural sector to develop ef-
ficient autonomous systems that can carry out common in-
field operations including harvesting, mowing, and spraying.
Increasing production while decreasing costs and environmental
damages is one of the main objectives for these autonomous
systems. Due to the nature of these tasks, complete coverage path
planning techniques are crucial to determining the best path that
covers the entire field while accounting for terrain characteristics,
operational needs, and robot properties.

In this study, we propose a novel complete coverage path
planning approach to define the ideal path for a wheeled robot
across an agricultural field. To identify all feasible solutions
satisfying a set of predefined constraints, a method based on tree
exploration is first proposed that examines skip-row patterns.
Second, the most optimal solution is selected by a selection
method. Maximizing the covered area while minimizing overlaps,
non-working path length, number of turns containing reverse
moves, and overall travel time are the objectives of the selection
method.

We showed on 6 real-world fields geometries that the row
skip approach offered benefits in terms of reduction of the
required headland size, and often helped decreasing the number
of necessary reverse moves and the overlaps, while increasing the
covered area.

Index Terms—Complete Coverage Path Planning, Precision
Agriculture, Autonomous Agriculture, Vehicle Routing Problem,
Wheeled robots, Path Planning, Route Planning

I. INTRODUCTION

Automated systems and robots are increasingly used in
every sector of industry since they boost productivity while
cutting expenses. In comparison to humans, they are able to
do a wider range of specialized and tedious activities with a
remarkable precision and accuracy. Agriculture is no exception
to this.

More food and agricultural products are required due to
a growing population [1], yet agriculture is also known as
a remarkable source of the air and environmental pollution
[2]. Autonomous systems capable of optimizing the cost and
efficiency of in-field operations is indispensable and demands
an urgent attention.
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One of the main challenges to perform an autonomous op-
eration such as harvesting, tillage, seeding, and pulverization
is to find a path that optimally covers the entire field. This
challenge is commonly known as Complete Coverage Path
Planning (CCPP). To generate an optimal and feasible path,
it is essential to consider the geometry and characteristics of
the field, the robot, and the machinery i.e. implement (Imp for
short) connected to the robot.

Due to the complexity of this problem, in the majority
of cases, the CCPP is referred to in the literature as two
distinct and sequential tasks: Coverage Path Planning (CPP)
and Agricultural Routing Problem (AVRP). CPP consists in
generating a set of parallel trajectories while AVRP consists
in finding an optimal sequence of these trajectories for a single
or multiple robots.

Generating parallel trajectories based on a reference di-
rection or the longest edge of the field is a prevalent CPP
method chosen by [3]–[9]. Furthermore, improving on this
method, generating parallel trajectories to a curved reference
line was also proposed [10], [11]. Another improvement was
to generate straight trajectories parallel to the boundary that
minimized the number of trajectories [12]–[14].

After determining the parallel lines, the generated paths of-
ten simply links them sequentially by half-turns. To determine
an optimal sequence, some authors applied a genetic algorithm
[15]. Zhou et al. [9] applied the ant colony optimization.
Jeon et al. [5] examined sequential and gathering patterns.
In the gathering pattern, the distance between two consecutive
trajectories is around half of the width of the field.

All of these methods, however, perform CCP and AVRP
separately as two distinct problems. In a previous work, we
proposed a one-step CCPP algorithm [16] to cover convex
and concave fields entirely, including the headlands, for field
operations in which the implement is in contact with the
ground when it is engaged. We demonstrated that a one-step
CCPP has the potential to find some interesting solutions that
are not possible to find with a two-step CCPP. This approach
provides optimal solutions with a sequential pattern of adjacent
tracks and headland tracks.

However, in some cases, it may be interesting to consider
skipping every other track: with some vehicles that have a large
turning radius, this method may reduce the size required for



headlands or avoid reversing. A human-operated vehicle will
prefer to avoid reversing and will find it difficult to skip rows.
But for an automated system or robot, this is a viable option
that has the potential to reduce the headlands area, which are
generally under-performing parts of the land due to the soil
compaction.

Based on our previous works [16], in this paper we propose
an extension of our one-step CCPP approach. In Section II,
we first recall the main principles of our method. Then, we
explain how the algorithm takes into account row skipping
in the sequence of trajectories. In Section V, we detail our
experiment and results, before discussing and concluding
them.

II. TREE-BASED INTELLIGENT SEARCH

Our approach, explained in more detail in [16], is performed
in three primary steps: 1) preprocessing 2) exploration 3)
Selection of optimal solutions. The preprocessing step de-
termines headlands, trajectories within headlands, as well as
turning spaces needed for traveling from one headland to
another. Considering the accessible edges of the field also
known as access segments, entry points are also determined.
The exploration algorithm finds every potential solution, while
respecting some predefined constraints, and stores them in
a solution space. A solution is a path i.e. a sequence of
trajectories that begins at an entrance, covers the field entirely,
and ends on one of the access segments. Finally, in the last
step, the cost of each solution is computed and the one that
has the lowest cost is selected.

In the extended algorithm, the first (preprocessing) step
remains identical to our previous method. The exploration
step is modified to generate solutions with a skip-row pattern
instead of a sequential pattern. In a skip-row pattern two
consecutive working trajectories in the main part of the field
are not adjacent. As an exception, they may be adjacent
when they are located close to a border of the field. This
is useful to cover previously skipped tracks. In order to take
into account and minimize the number of turns that include
reverse moves as a soft constraint, the last step (selection of
optimal solutions) is also slightly modified.

Headlands, that are used for performing half-turns, are
computed adjacent to the borders of the field. Performing half-
turns causes unworked areas in headlands as well as gaps
before and after each half-turn due to the distance needed for
lowering/raising the implement properly. Therefore, p trajec-
tories (inner trajectories) are considered inside a headland for
covering unworked areas caused by half-turns. One trajectory
outside and adjacent to each headland is also considered to
cover the unworked areas caused by gaps. These trajectories
are known as gap covering trajectories.

During the preprocessing step, turning spaces are also
computed around each corner of the field borders to ensure
feasible turns from one headland to another. For further detail
on the preprocessing step, we refer the readers to our previous
approach [16].

III. EXPLORATION ALGORITHM

The inputs of the exploration algorithm are the result of
the preprocessing, the entry points, a set of hard constraints,
γon, γoff , ℓt, ℓo and a coverage threshold, where γon and
γoff represent, respectively, the minimum turning radius of
the robot while its implement is on (lowered into the soil and
activated) and off (raised from the ground). ℓt represents the
distance needed for lowering/raising the implement properly.
ℓo represents the offset between the robot and its implement.

Starting from an entrance, the exploration algorithm pro-
gressively constructs and explores a tree where each sequence
of connected nodes represent a possible sequence of trajecto-
ries. A sequence of trajectories that satisfies the constraints,
has a coverage rate greater or equal to the coverage threshold
∆cov and ends on an access segment, is stored as a solution
in the solution space.

Let us recall the hard constraints, defined as follows:
• the robot and its implement must remain inside the field
• crossing a previously worked area with a new trajectory,

during which the implement is off, is forbidden
• overlaps in the main part of the field, i.e. outside the

headlands and the gap covering trajectories is forbidden
• the total overlap area caused by all trajectories of a

sequence must not exceeds a global overlap threshold
∆global that is a percentage of the field area

• to avoid unwanted local loops, the overlap of a trajectory
of a sequence with its ancestors in the same sequence
must not exceed a percentage of the trajectory’s worked
area (∆local). to let the robot find an access segment and
exit the field, once the coverage rate exceeds ∆cov , this
constraint is neglected

• the robot must travel at least ∆min dist while its im-
plement is on to authorize another trajectory for which
the implement is not on. The main reason is to avoid
lowering the implement to the ground and raising it for
short distances

After initializing a tree with an entry point as its root, the
construction and the exploration of the tree is performed for
each unvisited leaf node as a depth first exploration.

As illustrated in Fig. 1, for each leaf node Np a ray rp
is constructed based on its location and the direction of the
robot at this location. The intersection of ray rp with an inner
border of a headland and/or with a turning space defines the
next nodes that will be generated and might be added to the
tree after being validated by the hard constraints.

In case ray rp intersects with a turning space, trajectories
for traveling from one headland to another are generated as
detailed in our previous approach [16].

In case ray rp intersects with an inner border of a headland,
first a sequence of three trajectories are generated to reach
the corresponding inner border. As illustrated in Fig. 1, this
sequence contains a gap trajectory of length ℓt from Np to
Nc1 for lowering the implement, a working trajectory from
Nc1 to Nc2 and an inverse gap trajectory of length ℓt + ℓo
from Nc2 to Nc3 for raising the implement. Afterwards, four
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Fig. 1: Trajectory and tree representation of back-and-forth
moves. The purple point represents an exit node. For read-
ability purposes, only inner border of two headlands are
represented

side rays r(r1), r(r2), r(l1), and r(l2) are defined. They are
parallel to rp, with two on each side of rp, and are located
at a respective distance of w and 2w from rp. The closest
rays r(r1) and rl1 correspond to the adjacent tracks, while
rays r(r2) and rl2 correspond to a track skipping move. If
the intersections of the most distant rays r(r2) and rl2 with
an inner border both exist, two corresponding nodes Nc6 and
Nc7 are generated. Otherwise, nodes Nc4 and Nc5 are also
generated at the intersection with r(r1) and rl1. Finally a turn
from Nc3 to each of these new nodes is generated and they
are added to the tree after being validated.

When the intersection of either Nc6 or Nc7 with an inner
border exist, it means that taking an adjacent track is needed
to fill all previous skips.

The node generation scheme is repeated for all unvisited
leaves of the tree. If an access segment is nearby and the
coverage rate is already satisfied, a possible sequence of
trajectories to exiting the field is also generated. The sequence
of nodes Np, Nc1, Nc2, Nc3 and Nc9 in Fig. 1 illustrate an
example of this case.

IV. SELECTING THE MOST OPTIMAL SOLUTION

Assuming that e entrances are proposed in the preprocessing
step, the exploration algorithm is performed for each of the
entrances. The results of all explorations are stored in a single
solution space. Afterwards, coverage rate Scov , overlap rate
Sovl, non-working distance Snwd, operation time Sotm and
number of turns having reverse moves Srvs are computed for
each solution and normalized by (1).

S =
S − Smin

Smax − Smin
(1)

where Smin and Smax represent the minimum and maxi-
mum value of the corresponding metric over all solutions of
the solution space. For a solution i.e. a sequence of trajectories,
the coverage and overlap rates are respectively computed as
the sum of worked and overlap area caused by each trajectory.
The operation time for each solution is computed by (2).

(a) Field #1 (8.23ha) (b) Field #2
(4.39ha)

(c) Field #3
(4.58ha)

(d) Field #4
(7.85ha)

(e) Field #5 (7.68ha) (f) Field #6 (4.34ha)

Fig. 2: Green segments are accessible edges of the field.
Entrances are represented by red arrows

Sotm =
Lon

Von
+

Loff

Voff
+

Lgap

Vgap
(2)

where Lon, Lon and Lgap are respectively the length of
all trajectories during which the implement is on, of and in
transition (from on to off or vice versa). Accordingly Von,
Voff and Vgap are the average speed of the robot when its
implement is in on, off and in transition. Non-working distance
for the corresponding solution is then computed as Loff +
Lgap.

Considering C = (1 − Scov Sovl Snwd Sotm Srvs) and
W = (Wcov Wovl Wnwd Wotm Wrvs) where Wcov , Wovl,
Wotm, Wnwd, and Wrvs are weights given as input for the
corresponding soft constraint, the final cost of each solution
is computed by (3).

f =
CW⊺

Wcov +Wovl +Wotm +Wnwd
(3)

Finally the solution that has the lowest cost is represented
as the most optimal solution found by our approach.

V. RESULTS

To compare the presented approach (Skip-Row pattern
CCPP, SR-CCPP for short) against our previous CCPP ap-
proach (simple CCPP), six real-world fields were selected. The
area of these fields varies from 4.34 to 8.23 hectares (see Fig.
2). Both approaches were implemented and run on an Intel
Xeon(R) W-2135 CPU @ 3.70GHz × 12 with 32GB RAM.

To compare the final cost of the most optimal result found
by each approach, the solution spaces acquired by their ex-
ploration algorithms were combined and the selection method
was applied on the combined solution space.

To compare SR-CCPP and simple CCPP, we considered two
different value for γoff ; 2m and 3m, while other parameters
remain the same. The number of trajectories within a headland
was set to two (p = 2). Other parameters are given in Table



Parameter Value
w 3m
γon 15m
Von 3.5m/s
Vgap 2.5m/s
Voff 1.5m/s
ℓt 2m
ℓo 2m

∆cov 96%

Parameter Value
∆global 5%
∆local 95%

∆min dist 4m
Wcov 0.65
Wovl 0.15
Wnwd 0.05
Wotm 0.05
Wrvs 0.10

TABLE I: Inputs and parameters

Field Approach time (s) Coverage Overlap Rvs Lnw (m) f

#1 SR-CCPP 160.59 98.93% 1.23% 2 1184, 17 0.110
CCPP 9.73 98.80% 2.27% 4 3005.92 0.281

#2
SR-CCPP 131.47 98.80% 2.05% 0 1485.36 0.118

CCPP 10.01 98.21% 3.58% 2 1433.84 0.336

#3
SR-CCPP 282.28 98.96% 1.39% 0 1565.47 0.118

CCPP 18.65 98.86% 2.15% 0 1303.98 0.136

#4
SR-CCPP 27.58 97.52% 2.46% 0 1990.87 0.363

CCPP 7.63 98.23% 2.11% 1 1957.83 0.168

#5
SR-CCPP 222.69 99.00% 0.31% 0 1249.25 0.074

CCPP 10.99 99.05% 2.38% 2 1402.57 0.180

#6
SR-CCPP 335.91 98.71% 1.20% 0 1314.63 0.105

CCPP 31.23 98.81% 3.15% 0 1194.58 0.135

(a) γoff = 2m
Field Approach time (s) Coverage Overlap Rvs Lnw (m) f

#1 SR-CCPP 58.08 98.61% 1.68% 10 2916.47 0.193
CCPP 14.14 98.42% 0.23% 57 882.89 0.199

#2
SR-CCPP 35.92 98.65% 2.01% 48 1415.98 0.201

CCPP 8.70 98.75% 3.31% 71 1080.41 0.224

#3
SR-CCPP 38.48 98.73% 3.39% 34 1206.01 0.193

CCPP 9.01 98.66% 4.35% 74 1117.74 0.312

#4
SR-CCPP 132.44 99.08% 2.28% 10 2013.52 0.137

CCPP 23.96 97.48% 4.24% 103 1485.31 0.585

#5
SR-CCPP 98.97 98.99% 0.31% 4 1243.58 0.088

CCPP 10.54 99.20% 2.09% 80 1093.59 0.188

#6
SR-CCPP 51.86 98.56% 1.20% 48 1222.81 0.140

CCPP 13.73 98.76% 3.12% 48 969.11 0.220

(b) γoff = 3m

Fig. 3: Numerical results. The exploration time is referred to
as time for short. Rvs represents the number of turns that
include reverse moves and Lnw represents the non-working
traveled distance

I. Table 3 summarizes numerical results of these comparisons
and Fig. 4 illustrate the most optimal results for Field #6.

VI. DISCUSSION

Let us recall that for performing turns and half-turns, our
approach first tries to employ only forward moves by applying
the method proposed by [17]. If it is not possible, turns that
include reverse moves are also considered. This second type
of turns are generated by the method proposed by [18].

Table 3a summarizes the results obtained by the presented
approach (SR-CCPP) and our previous approach (simple
CCPP) while γoff = 2m. According to these results, in
general SR-CCPP performed better than simple CCPP for
five fields out of six. For Fields #1, #2 and #3, SR-CCPP
achieved a better coverage rate. For Fields #1, #2, #3, #5
and #6, SR-CCPP did considerably less overlaps. However,

(a) Simple CCPP

(b) SR-CCPP

Fig. 4: Most optimal results obtained for Field #6 while
γoff = 2m. The black arrows indicate where the robot enters
and exits

in terms of non-working traveled distance simple CCPP was
better for four fields.

Increasing γoff to three meters, SR-CCPP performed better
for all cases. As summarized in Table 3b, skipping feature
of SR-CCPP made it able to use less turns including reverse
moves for all fields. It also decreased the overlap rate by
almost 1% or even more, for the last four fields. However,
skipping tracks also caused more non-working traveled dis-
tance.

As can be noticed in Fig. 4, when skipping rows, turns use
less space in the headlands. A tight turn will tend to have
a bulbous shape that occupies more space, whereas a wider
turn may be flatter. This highlights the ability of the row skip
pattern to decrease the size required for headlands. Given that
a headland is generally a less productive area of the field, this
can potentially increase the productivity of the field.

In general, depending on the features of the robot, the



field shape and accessibility, the headlands width and the
goals of optimization, one method might outperform another.
For instance, considering the minimization of non-working
traveled distance as the primary goal of the optimization
by modifying the weight of constraints, simple CCPP may
perform better. As a result, allowing the decision-making
algorithm to try each approach, or to combine them into a
more sophisticated CCPP, could improve the effectiveness of
the final method for finding a good solution for a variety of
machinery, operations and field shapes.

VII. CONCLUSION

In this paper, a one-step CCPP method that can provide a
coverage path with a skip-row pattern is proposed. The pre-
sented approach maximizes the covered area while minimizing
overlaps, non-working path length, number of turns containing
reverse moves and overall travel time. It covers the headlands
automatically while consider the geometry of both the robot
and its implement. We compared the proposed approach with
our previous approach and we showed that considering both
sequential and skip-row pattern increases the possibility of
finding the optimum solution. It also increases the ability of
a CCPP approach to find a proper solution for a variety of
parameters and field shapes.
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